Revision a09a09c0
Added by Jim Regetz almost 13 years ago
- ID a09a09c0b9afeb1e0aa655e4ebd758eb5cdcfdd5
terrain/rscripts/CreateImageDiffPlotsOverlayMulti.r | ||
---|---|---|
1 |
############################################################################################## |
|
2 |
# |
|
3 |
# CreateImageDiffPlots |
|
4 |
# |
|
5 |
# R script generates collection of nine plots that display the distributions of populations of |
|
6 |
# three elevation pixel pairs in proximity to the border between ASTER and STRM data in mosaic |
|
7 |
# images# under development for the Environment and Organisms project. |
|
8 |
# |
|
9 |
# |
|
10 |
# Inputs: |
|
11 |
# 1) Comma Separated Value (CSV) table containing randomly-sampled elevation value pairs, |
|
12 |
# extracted from ASTER/CGIAR mosaic and CDEM images, created by the R script: makeImagePairTable.r |
|
13 |
# Note: At present, be sure that this file has been sorted by column 1 (ColumnID) in Excel |
|
14 |
# before using in this program. |
|
15 |
# |
|
16 |
# 2) sampling factor: integer (range=1 to number of recors in input table. Determines |
|
17 |
# the size of randomly-selected sampe of total table record 'triplets' (north, border, |
|
18 |
# and south) rows of each column sample) to be displayed in the plots: |
|
19 |
# sampling factor = 1 : plot every table record |
|
20 |
# 10 : plot a random sample containing 1/10th of records |
|
21 |
# 100 : plot random sample containing 1/100th of records. |
|
22 |
# |
|
23 |
# To run: |
|
24 |
# |
|
25 |
# 1) place this file and the input file "tableForMark4000_5_8_SortColID.csv" in folder |
|
26 |
# 2) start R |
|
27 |
# 3) > source("CreateImageDiffPlotsOverlay.r") |
|
28 |
# 4) > CreateImageDiffPlots(sampling factor) |
|
29 |
# < press <cr> key to view plots sequentially |
|
30 |
# |
|
31 |
# TODO: add symbol legend to each plot. |
|
32 |
# Author: Rick Reeves, NCEAS |
|
33 |
# May 14, 2011 |
|
34 |
############################################################################################## |
|
35 |
CreateImageDiffPlots <- function(plotSampFact = 100) |
|
36 |
{ |
|
37 |
# Check plotSampleFact range |
|
38 |
|
|
39 |
if (plotSampFact < 1) |
|
40 |
plotSampFact = 1 |
|
41 |
|
|
42 |
if (plotSampFact > 100) |
|
43 |
plotSampFact = 100 |
|
44 |
|
|
45 |
# Read input table that was sorted OFFLINE in Excel on the first column (ColumnID) |
|
46 |
|
|
47 |
pointTable <-read.csv("tableForMark4000_5_8_SortColID.csv") |
|
48 |
|
|
49 |
# Table created by randomly sampling from two superimposed |
|
50 |
# image: |
|
51 |
# 1) DOM mosaic image comprised of ASTER and SRTM components. |
|
52 |
# 2) 'Baseline' Canadian DEM (CDEM) image. |
|
53 |
# |
|
54 |
# The input table contains three rows for each randomly-selected |
|
55 |
# pixel pair from both images. Each row contains two pixel pairs, |
|
56 |
# the first pair drawn from the image mosaic, the second pair |
|
57 |
# drawn from the CDEM image: |
|
58 |
# First pair: North pixel, South pixel (ASTER/SRTM mosaic) |
|
59 |
# Second pair: North pixel, South pixel (CDEM) |
|
60 |
# |
|
61 |
# The first row of each 'triplet' contains pixel pairs North of border, |
|
62 |
# The second row contains pixel pairs spanning border, |
|
63 |
# The third row contains pixel pairs South of border, |
|
64 |
# |
|
65 |
# This script generates a series of plots that display |
|
66 |
# differences between: |
|
67 |
# 1) The mosaic and CDEM images |
|
68 |
# 2) Image pixels on and away from the ASTER / SRTM boundary. |
|
69 |
# |
|
70 |
northRowIndexes = seq(from=1, to=(nrow(pointTable) - 3),by=3) |
|
71 |
borderRowIndexes = seq(from=2, to=(nrow(pointTable) - 1),by=3) |
|
72 |
southRowIndexes = seq(from=3, to=(nrow(pointTable)),by=3) |
|
73 |
# |
|
74 |
# calculate and append the difference between elevations |
|
75 |
# and CDEM |
|
76 |
# these lines create the inputs for differnce image plots for each of three |
|
77 |
# pixel pair subsets: North of border (All Aster), border (combo Aster/Srtm), |
|
78 |
# South of border (all Srtm) |
|
79 |
# |
|
80 |
# First, add the 'difference columns' to the entire table |
|
81 |
# |
|
82 |
pointTable <-cbind(pointTable,(pointTable$elevNorth - pointTable$elevSouth)) |
|
83 |
pointTable <-cbind(pointTable,(pointTable$cdemNorth - pointTable$cdemSouth)) |
|
84 |
pointTable <-cbind(pointTable,(pointTable$elevNorth - pointTable$cdemNorth)) |
|
85 |
pointTable <-cbind(pointTable,(pointTable$elevSouth - pointTable$cdemSouth)) |
|
86 |
# |
|
87 |
colnames(pointTable)[6] <- "diffMosaicNorthSouth" |
|
88 |
colnames(pointTable)[7] <- "diffCDEMNorthSouth" |
|
89 |
colnames(pointTable)[8] <- "diffNorthMosaicCDEM" |
|
90 |
colnames(pointTable)[9] <- "diffSouthMosaicCDEM" |
|
91 |
|
|
92 |
# Difference between Mosaic (ASTER or CGIAR or border) |
|
93 |
# and CDEM elevation as pertentage of the mosaic elevation |
|
94 |
|
|
95 |
pointTable <-cbind(pointTable,(pointTable$diffNorthMosaicCDEM/pointTable$elevNorth * 100)) |
|
96 |
pointTable <-cbind(pointTable,(pointTable$diffSouthMosaicCDEM/pointTable$elevSouth * 100)) |
|
97 |
|
|
98 |
colnames(pointTable)[10] <- "magDiffMosaicCDEMNorthPct" |
|
99 |
colnames(pointTable)[11] <- "magDiffMosaicCDEMSouthPct" |
|
100 |
|
|
101 |
# For the plots, subdivide the table into three segments: |
|
102 |
# rows north of border |
|
103 |
# rows crossing border |
|
104 |
# rows south of border |
|
105 |
|
|
106 |
northRowTblAll = pointTable[northRowIndexes,] |
|
107 |
borderRowTblAll = pointTable[borderRowIndexes,] |
|
108 |
southRowTblAll = pointTable[southRowIndexes,] |
|
109 |
|
|
110 |
subset <- 1:nrow(northRowTblAll) |
|
111 |
|
|
112 |
randSub <- sample(subset,as.integer(length(subset) / plotSampFact)) |
|
113 |
|
|
114 |
northRowTbl <- northRowTblAll[randSub,] |
|
115 |
borderRowTbl <- borderRowTblAll[randSub,] |
|
116 |
southRowTbl <- southRowTblAll[randSub,] |
|
117 |
|
|
118 |
message("hit key to create each plot...") |
|
119 |
browser() |
|
120 |
|
|
121 |
# Three plotting characters used |
|
122 |
|
|
123 |
plotCh1 <- 17 # 'north' (Aster) points |
|
124 |
plotCh2 <- 18 # 'border' (Aster+srtm) points |
|
125 |
plotCh3 <- 20 # 'south' (srtm) points |
|
126 |
|
|
127 |
# First plot pair: North/South Mosaic Image pixel elevation for North/South subsets 'distance East from Western edge'. |
|
128 |
|
|
129 |
xAxisLbl <- sprintf("M/SD: AST: %.2f / %.2f BRD: %.2f / %.2f STM: %.2f / %.2f",mean(northRowTbl$elevNorth,na.rm=TRUE),sd(northRowTbl$elevNorth,na.rm=TRUE), |
|
130 |
mean(borderRowTbl$elevNorth,na.rm=TRUE),sd(borderRowTbl$elevNorth,na.rm=TRUE), |
|
131 |
mean(southRowTbl$elevNorth,na.rm=TRUE),sd(southRowTbl$elevNorth,na.rm=TRUE)) |
|
132 |
plot(northRowTbl$ColumnID,northRowTbl$elevNorth,main="North Mosaic Pixel Elev: ASTER (red) Border (green) SRTM (blue)",xlab=xAxisLbl,col="red",pch=plotCh1) |
|
133 |
points(borderRowTbl$ColumnID,borderRowTbl$elevNorth,col="darkgreen",pch=plotCh2) |
|
134 |
points(southRowTbl$ColumnID,southRowTbl$elevNorth,col="blue",pch=plotCh3) |
|
135 |
browser() |
|
136 |
dev.new() |
|
137 |
xAxisLbl <- sprintf("M/SD: AST: %.2f / %.2f BRD: %.2f / %.2f STM: %.2f / %.2f",mean(northRowTbl$elevSouth,na.rm=TRUE),sd(northRowTbl$elevSouth,na.rm=TRUE), |
|
138 |
mean(borderRowTbl$elevSouth,na.rm=TRUE),sd(borderRowTbl$elevSouth,na.rm=TRUE), |
|
139 |
mean(southRowTbl$elevSouth,na.rm=TRUE),sd(southRowTbl$elevSouth,na.rm=TRUE)) |
|
140 |
plot(northRowTbl$ColumnID,northRowTbl$elevSouth,main="South Mosaic Pixel Elev: ASTER (red) Border (green) SRTM (blue)",xlab=xAxisLbl,col="red",pch=plotCh1) |
|
141 |
points(borderRowTbl$ColumnID,borderRowTbl$elevSouth,col="darkgreen",pch=plotCh2) |
|
142 |
points(southRowTbl$ColumnID,southRowTbl$elevSouth,col="blue",pch=plotCh3) |
|
143 |
browser() |
|
144 |
dev.new() |
|
145 |
# Second plot pair: North/South CDEM pixel elevation for North/South subsets 'distance East from Western edge'. |
|
146 |
|
|
147 |
xAxisLbl <- sprintf("M/SD: AST: %.2f / %.2f BRD: %.2f / %.2f STM: %.2f / %.2f",mean(northRowTbl$cdemNorth,na.rm=TRUE),sd(northRowTbl$cdemNorth,na.rm=TRUE), |
|
148 |
mean(borderRowTbl$cdemNorth,na.rm=TRUE),sd(borderRowTbl$cdemNorth,na.rm=TRUE), |
|
149 |
mean(southRowTbl$cdemNorth,na.rm=TRUE),sd(southRowTbl$cdemNorth,na.rm=TRUE)) |
|
150 |
plot(northRowTbl$ColumnID,northRowTbl$cdemNorth,main="North CDEM Pixel Elev ASTER (r) Border (g) SRTM (b)",xlab=xAxisLbl,col="red",pch=plotCh1) |
|
151 |
points(borderRowTbl$ColumnID,borderRowTbl$cdemNorth,col="darkgreen",pch=plotCh2) |
|
152 |
points(southRowTbl$ColumnID,southRowTbl$cdemNorth,col="blue",pch=plotCh3) |
|
153 |
browser() |
|
154 |
dev.new() |
|
155 |
xAxisLbl <- sprintf("M/SD: AST: %.2f / %.2f BRD: %.2f / %.2f STM: %.2f / %.2f",mean(northRowTbl$cdemSouth,na.rm=TRUE),sd(northRowTbl$cdemSouth,na.rm=TRUE), |
|
156 |
mean(borderRowTbl$cdemSouth,na.rm=TRUE),sd(borderRowTbl$cdemSouth,na.rm=TRUE), |
|
157 |
mean(southRowTbl$cdemSouth,na.rm=TRUE),sd(southRowTbl$cdemSouth,na.rm=TRUE)) |
|
158 |
plot(northRowTbl$ColumnID,northRowTbl$cdemSouth,main="South CDEM Pixel Elev ASTER (r) Border (g) SRTM (b)",xlab=xAxisLbl,col="red",pch=plotCh1) |
|
159 |
points(borderRowTbl$ColumnID,borderRowTbl$cdemSouth,col="darkgreen",pch=plotCh2) |
|
160 |
points(southRowTbl$ColumnID,southRowTbl$cdemSouth,col="blue",pch=plotCh3) |
|
161 |
browser() |
|
162 |
dev.new() |
|
163 |
# Third plot pair: difference between North and South pixels in pair. |
|
164 |
|
|
165 |
xAxisLbl <- sprintf("M/SD: AST: %.2f / %.2f BRD: %.2f / %.2f STM: %.2f / %.2f",mean(northRowTbl$diffMosaicNorthSouth,na.rm=TRUE),sd(northRowTbl$diffMosaicNorthSouth,na.rm=TRUE), |
|
166 |
mean(borderRowTbl$diffMosaicNorthSouth,na.rm=TRUE),sd(borderRowTbl$diffMosaicNorthSouth,na.rm=TRUE), |
|
167 |
mean(southRowTbl$diffMosaicNorthSouth,na.rm=TRUE),sd(southRowTbl$diffMosaicNorthSouth,na.rm=TRUE)) |
|
168 |
plot(northRowTbl$ColumnID,northRowTbl$diffMosaicNorthSouth,main="Mosaic N/S Pixel Diff: ASTER (r) Border (g) SRTM (b)",xlab=xAxisLbl,col="red",pch=plotCh1) |
|
169 |
points(borderRowTbl$ColumnID,borderRowTbl$diffMosaicNorthSouth,col="darkgreen",pch=plotCh2) |
|
170 |
points(southRowTbl$ColumnID,southRowTbl$diffMosaicNorthSouth,col="blue",pch=plotCh3) |
|
171 |
browser() |
|
172 |
dev.new() |
|
173 |
xAxisLbl <- sprintf("M/SD: AST: %.2f / %.2f BRD: %.2f / %.2f STM: %.2f / %.2f",mean(northRowTbl$diffCDEMNorthSouth,na.rm=TRUE),sd(northRowTbl$diffCDEMNorthSouth,na.rm=TRUE), |
|
174 |
mean(borderRowTbl$diffCDEMNorthSouth,na.rm=TRUE),sd(borderRowTbl$diffCDEMNorthSouth,na.rm=TRUE), |
|
175 |
mean(southRowTbl$diffCDEMNorthSouth,na.rm=TRUE),sd(southRowTbl$diffCDEMNorthSouth,na.rm=TRUE)) |
|
176 |
plot(northRowTbl$ColumnID,northRowTbl$diffCDEMNorthSouth,main="CDEM N/S Pixel Diff: ASTER (r) Border (g) SRTM (b)",xlab=xAxisLbl,col="red",pch=plotCh1) |
|
177 |
points(borderRowTbl$ColumnID,borderRowTbl$diffCDEMNorthSouth,col="darkgreen",pch=plotCh2) |
|
178 |
points(southRowTbl$ColumnID,southRowTbl$diffCDEMNorthSouth,col="blue",pch=plotCh3) |
|
179 |
browser() |
|
180 |
dev.new() |
|
181 |
|
|
182 |
# Fourth plot pair: the Mosaic/CDEM difference for North and South pixels |
|
183 |
|
|
184 |
xAxisLbl <- sprintf("M/SD: AST: %.2f / %.2f BRD: %.2f / %.2f STM: %.2f / %.2f",mean(northRowTbl$diffNorthMosaicCDEM,na.rm=TRUE),sd(northRowTbl$diffNorthMosaicCDEM,na.rm=TRUE), |
|
185 |
mean(borderRowTbl$diffNorthMosaicCDEM,na.rm=TRUE),sd(borderRowTbl$diffNorthMosaicCDEM,na.rm=TRUE), |
|
186 |
mean(southRowTbl$diffNorthMosaicCDEM,na.rm=TRUE),sd(southRowTbl$diffNorthMosaicCDEM,na.rm=TRUE)) |
|
187 |
plot(northRowTbl$ColumnID,northRowTbl$diffMosaicNorthSouth,main="Mosaic / CDEM Pixel Diff (North): ASTER (r) Border (g) SRTM (b)",xlab=xAxisLbl,col="red",pch=plotCh1) |
|
188 |
points(borderRowTbl$ColumnID,borderRowTbl$diffMosaicNorthSouth,col="darkgreen",pch=plotCh2) |
|
189 |
points(southRowTbl$ColumnID,southRowTbl$diffMosaicNorthSouth,col="blue",pch=plotCh3) |
|
190 |
browser() |
|
191 |
dev.new() |
|
192 |
xAxisLbl <- sprintf("M/SD: AST: %.2f / %.2f BRD: %.2f / %.2f STM: %.2f / %.2f",mean(northRowTbl$diffSouthMosaicCDEM,na.rm=TRUE),sd(northRowTbl$diffSouthMosaicCDEM,na.rm=TRUE), |
|
193 |
mean(borderRowTbl$diffSouthMosaicCDEM,na.rm=TRUE),sd(borderRowTbl$diffSouthMosaicCDEM,na.rm=TRUE), |
|
194 |
mean(southRowTbl$diffSouthMosaicCDEM,na.rm=TRUE),sd(southRowTbl$diffSouthMosaicCDEM,na.rm=TRUE)) |
|
195 |
plot(northRowTbl$ColumnID,northRowTbl$diffCDEMNorthSouth,main="Mosaic / CDEM Pixel Diff (South): ASTER (r) Border (g) SRTM (b)",xlab=xAxisLbl,col="red",pch=plotCh1) |
|
196 |
points(borderRowTbl$ColumnID,borderRowTbl$diffCDEMNorthSouth,col="darkgreen",pch=plotCh2) |
|
197 |
points(southRowTbl$ColumnID,southRowTbl$diffCDEMNorthSouth,col="blue",pch=plotCh3) |
|
198 |
browser() |
|
199 |
dev.new() |
|
200 |
# Fifth plot pair: the Mosaic/CDEM difference divided by the (ASTER or SRTM) elevation |
|
201 |
|
|
202 |
xAxisLbl <- sprintf("M/SD: AST: %.2f / %.2f BRD: %.2f / %.2f STM: %.2f / %.2f",mean(northRowTbl$magDiffMosaicCDEMNorthPct,na.rm=TRUE),sd(northRowTbl$magDiffMosaicCDEMNorthPct,na.rm=TRUE), |
|
203 |
mean(borderRowTbl$magDiffMosaicCDEMNorthPct,na.rm=TRUE),sd(borderRowTbl$magDiffMosaicCDEMNorthPct,na.rm=TRUE), |
|
204 |
mean(southRowTbl$magDiffMosaicCDEMNorthPct,na.rm=TRUE),sd(southRowTbl$magDiffMosaicCDEMNorthPct,na.rm=TRUE)) |
|
205 |
plot(northRowTbl$ColumnID,northRowTbl$magDiffMosaicCDEMNorthPct,main="Pixel Elev Diff as % of Mosaic Elev (North) - ASTER (r) Border (g) SRTM (b)",xlab=xAxisLbl,col="red",pch=plotCh1) |
|
206 |
points(borderRowTbl$ColumnID,borderRowTbl$magDiffMosaicCDEMNorthPct,col="darkgreen",pch=plotCh2) |
|
207 |
points(southRowTbl$ColumnID,southRowTbl$magDiffMosaicCDEMNorthPct,col="blue",pch=plotCh3) |
|
208 |
browser() |
|
209 |
dev.new() |
|
210 |
xAxisLbl <- sprintf("M/SD: AST: %.2f / %.2f BRD: %.2f / %.2f STM: %.2f / %.2f",mean(northRowTbl$magDiffMosaicCDEMSouthPct,na.rm=TRUE),sd(northRowTbl$magDiffMosaicCDEMSouthPct,na.rm=TRUE), |
|
211 |
mean(borderRowTbl$magDiffMosaicCDEMSouthPct,na.rm=TRUE),sd(borderRowTbl$magDiffMosaicCDEMSouthPct,na.rm=TRUE), |
|
212 |
mean(southRowTbl$magDiffMosaicCDEMSouthPct,na.rm=TRUE),sd(southRowTbl$magDiffMosaicCDEMSouthPct,na.rm=TRUE)) |
|
213 |
plot(northRowTbl$ColumnID,northRowTbl$magDiffMosaicCDEMSouthPct,main="Pixel Elev Diff as % of Mosaic Elev (South) - ASTER (r) Border (g) SRTM (b)",xlab=xAxisLbl,col="red",pch=plotCh1) |
|
214 |
points(borderRowTbl$ColumnID,borderRowTbl$magDiffMosaicCDEMSouthPct,col="darkgreen",pch=plotCh2) |
|
215 |
points(southRowTbl$ColumnID,southRowTbl$magDiffMosaicCDEMSouthPct,col="blue",pch=plotCh3) |
|
216 |
browser() |
|
217 |
dev.new() |
|
218 |
# Final plot pair: Mosaic vs CDEM difference vs elevation (north or south) |
|
219 |
|
|
220 |
xAxisLbl <- sprintf("M/SD: AST: %.2f / %.2f BRD: %.2f / %.2f STM: %.2f / %.2f",mean(northRowTbl$diffMosaicNorthSouth,na.rm=TRUE),sd(northRowTbl$diffMosaicNorthSouth,na.rm=TRUE), |
|
221 |
mean(borderRowTbl$diffMosaicNorthSouth,na.rm=TRUE),sd(borderRowTbl$diffMosaicNorthSouth,na.rm=TRUE), |
|
222 |
mean(southRowTbl$diffMosaicNorthSouth,na.rm=TRUE),sd(southRowTbl$diffMosaicNorthSouth,na.rm=TRUE)) |
|
223 |
plot(northRowTbl$elevNorth,northRowTbl$diffMosaicNorthSouth,main="Mosaic Elev N/S Diff ASTER (r) Border (g) SRTM (b)",xlab=xAxisLbl,col="red",pch=plotCh1) |
|
224 |
points(borderRowTbl$elevNorth,borderRowTbl$diffMosaicNorthSouth,col="darkgreen",pch=plotCh2) |
|
225 |
points(southRowTbl$elevNorth,southRowTbl$diffMosaicNorthSouth,col="blue",pch=plotCh3) |
|
226 |
browser() |
|
227 |
dev.new() |
|
228 |
xAxisLbl <- sprintf("M/SD: AST: %.2f / %.2f BRD: %.2f / %.2f STM: %.2f / %.2f",mean(northRowTbl$diffCDEMNorthSouth,na.rm=TRUE),sd(northRowTbl$diffCDEMNorthSouth,na.rm=TRUE), |
|
229 |
mean(borderRowTbl$diffCDEMNorthSouth,na.rm=TRUE),sd(borderRowTbl$diffCDEMNorthSouth,na.rm=TRUE), |
|
230 |
mean(southRowTbl$diffCDEMNorthSouth,na.rm=TRUE),sd(southRowTbl$diffCDEMNorthSouth,na.rm=TRUE)) |
|
231 |
plot(northRowTbl$elevNorth,northRowTbl$diffCDEMNorthSouth,main="CDEM Elev N/S Diff ASTER (r) Border (g) SRTM (b)",xlab=xAxisLbl,col="red",pch=plotCh1) |
|
232 |
points(borderRowTbl$elevNorth,borderRowTbl$diffCDEMNorthSouth,col="darkgreen",pch=plotCh2) |
|
233 |
points(southRowTbl$elevNorth,southRowTbl$diffCDEMNorthSouth,col="blue",pch=plotCh3) |
|
234 |
message("All plots created - hit key to delete them...") |
|
235 |
browser() |
|
236 |
graphics.off() |
|
237 |
} |
terrain/rscripts/CreateImageDiffPlotsOverlayNewPlots.R | ||
---|---|---|
1 |
############################################################################################## |
|
2 |
# |
|
3 |
# CreateImageDiffPlots |
|
4 |
# |
|
5 |
# R script generates collection of nine plots that display the distributions of populations of |
|
6 |
# three elevation pixel pairs in proximity to the border between ASTER and STRM data in mosaic |
|
7 |
# images# under development for the Environment and Organisms project. |
|
8 |
# |
|
9 |
# |
|
10 |
# Inputs: |
|
11 |
# 1) Comma Separated Value (CSV) table containing randomly-sampled elevation value pairs, |
|
12 |
# extracted from ASTER/CGIAR mosaic and CDEM images, created by the R script: makeImagePairTable.r |
|
13 |
# Note: At present, be sure that this file has been sorted by column 1 (ColumnID) in Excel |
|
14 |
# before using in this program. |
|
15 |
# NOTE: This filename is set in the body of the script. |
|
16 |
# |
|
17 |
# 2) sampling factor: integer (range=1 to number of recors in input table. Determines |
|
18 |
# the size of randomly-selected sampe of total table record 'triplets' (north, border, |
|
19 |
# and south) rows of each column sample) to be displayed in the plots: |
|
20 |
# sampling factor = 1 : plot every table record |
|
21 |
# 10 : plot a random sample containing 1/10th of records |
|
22 |
# 100 : plot random sample containing 1/100th of records. |
|
23 |
# 3) JpgPlotFileFlag: Set to TRUE to have *individual* plots written to JPG files. |
|
24 |
# |
|
25 |
# To run: |
|
26 |
# |
|
27 |
# 1) place this file and the input file "tableForMark4000_5_8_SortColID.csv" in folder |
|
28 |
# 2) start R |
|
29 |
# 3) > source("CreateImageDiffPlotsOverlayNewPlots.r") |
|
30 |
# 4) > CreateImageDiffPlots(sampling factor, JpegFlag) |
|
31 |
# < press <cr> key to view plots sequentially |
|
32 |
# |
|
33 |
# TODO: add symbol legend to each plot. |
|
34 |
# Author: Rick Reeves, NCEAS |
|
35 |
# May 14, 2011 |
|
36 |
# May 17, 2011: This version generates 'delta scatterplots' specified by Mark and Jim. |
|
37 |
# May 18, 2011: If JpgPlotFlag set, write individual plot files to JPG files. |
|
38 |
############################################################################################## |
|
39 |
CreateImageDiffPlots <- function(plotSampFact = 1,JpgPlotFileFlag = TRUE) |
|
40 |
{ |
|
41 |
|
|
42 |
# Check plotSampleFact range |
|
43 |
|
|
44 |
if (plotSampFact < 1) |
|
45 |
plotSampFact = 1 |
|
46 |
|
|
47 |
# Read input table that was sorted OFFLINE in Excel on the first column (ColumnID) |
|
48 |
|
|
49 |
pointTable <-read.csv("pixelPairs36000_5_8_TS.csv") |
|
50 |
# Table created by randomly sampling from two superimposed |
|
51 |
# image: |
|
52 |
# 1) DOM mosaic image comprised of ASTER and SRTM components. |
|
53 |
# 2) 'Baseline' Canadian DEM (CDEM) image. |
|
54 |
# |
|
55 |
# The input table contains three rows for each randomly-selected |
|
56 |
# pixel pair from both images. Each row contains two pixel pairs, |
|
57 |
# the first pair drawn from the image mosaic, the second pair |
|
58 |
# drawn from the CDEM image: |
|
59 |
# First pair: North pixel, South pixel (ASTER/SRTM mosaic) |
|
60 |
# Second pair: North pixel, South pixel (CDEM) |
|
61 |
# |
|
62 |
# The first row of each 'triplet' contains pixel pairs North of border, |
|
63 |
# The second row contains pixel pairs spanning border, |
|
64 |
# The third row contains pixel pairs South of border, |
|
65 |
# |
|
66 |
# This script generates a series of plots that display |
|
67 |
# differences between: |
|
68 |
# 1) The mosaic and CDEM images |
|
69 |
# 2) Image pixels on and away from the ASTER / SRTM boundary. |
|
70 |
# |
|
71 |
northRowIndexes = seq(from=1, to=(nrow(pointTable) - 3),by=3) |
|
72 |
borderRowIndexes = seq(from=2, to=(nrow(pointTable) - 1),by=3) |
|
73 |
southRowIndexes = seq(from=3, to=(nrow(pointTable)),by=3) |
|
74 |
# |
|
75 |
# calculate and append the difference between elevations |
|
76 |
# and CDEM |
|
77 |
# these lines create the inputs for differnce image plots for each of three |
|
78 |
# pixel pair subsets: North of border (All Aster), border (combo Aster/Srtm), |
|
79 |
# South of border (all Srtm) |
|
80 |
# |
|
81 |
# First, add the 'difference columns' to the entire table |
|
82 |
# |
|
83 |
pointTable <-cbind(pointTable,(pointTable$elevNorth - pointTable$elevSouth)) |
|
84 |
pointTable <-cbind(pointTable,(pointTable$cdemNorth - pointTable$cdemSouth)) |
|
85 |
pointTable <-cbind(pointTable,(pointTable$elevNorth - pointTable$cdemNorth)) |
|
86 |
pointTable <-cbind(pointTable,(pointTable$elevSouth - pointTable$cdemSouth)) |
|
87 |
# |
|
88 |
colnames(pointTable)[6] <- "diffMosaicNorthSouth" |
|
89 |
colnames(pointTable)[7] <- "diffCDEMNorthSouth" |
|
90 |
colnames(pointTable)[8] <- "diffNorthMosaicCDEM" |
|
91 |
colnames(pointTable)[9] <- "diffSouthMosaicCDEM" |
|
92 |
|
|
93 |
# add a placeholder for the 'boundary' value, across each table |
|
94 |
|
|
95 |
# pointTable <-cbind(pointTable,(-1)) |
|
96 |
|
|
97 |
# colnames(pointTable)[10] <- "deltaAcrossBorder" |
|
98 |
|
|
99 |
# Difference between Mosaic (ASTER or CGIAR or border) |
|
100 |
# and CDEM elevation as pertentage of the mosaic elevation |
|
101 |
|
|
102 |
pointTable <-cbind(pointTable,(pointTable$diffNorthMosaicCDEM/pointTable$elevNorth * 100)) |
|
103 |
pointTable <-cbind(pointTable,(pointTable$diffSouthMosaicCDEM/pointTable$elevSouth * 100)) |
|
104 |
|
|
105 |
colnames(pointTable)[10] <- "magDiffMosaicCDEMNorthPct" |
|
106 |
colnames(pointTable)[11] <- "magDiffMosaicCDEMSouthPct" |
|
107 |
|
|
108 |
# For the plots, subdivide the table into three segments: |
|
109 |
# rows north of border |
|
110 |
# rows crossing border |
|
111 |
# rows south of border |
|
112 |
|
|
113 |
northRowTblAll = pointTable[northRowIndexes,] |
|
114 |
borderRowTblAll = pointTable[borderRowIndexes,] |
|
115 |
southRowTblAll = pointTable[southRowIndexes,] |
|
116 |
|
|
117 |
subset <- 1:nrow(northRowTblAll) |
|
118 |
|
|
119 |
randSub <- sample(subset,as.integer(length(subset) / plotSampFact)) |
|
120 |
|
|
121 |
northRowTbl <- northRowTblAll[randSub,] |
|
122 |
borderRowTbl <- borderRowTblAll[randSub,] |
|
123 |
southRowTbl <- southRowTblAll[randSub,] |
|
124 |
|
|
125 |
message("hit key to create each plot...") |
|
126 |
browser() |
|
127 |
|
|
128 |
# Three plotting characters used |
|
129 |
|
|
130 |
plotCh1 <- 17 # 'north' (aster) points |
|
131 |
plotCh2 <- 18 # 'border' (aster+srtm) points |
|
132 |
plotCh3 <- 20 # 'south' (srtm) points |
|
133 |
|
|
134 |
# NEW: Three plots: The difference between Mosaic and CDEM for pixels along |
|
135 |
# each of three border edges: North (ASTER), Border, South (SRTM) |
|
136 |
# for now, north, border, south have separate plots |
|
137 |
|
|
138 |
# We need to tailor the plot 'triplet' X and Y axes to the dynamic ranges of all three data sets. |
|
139 |
|
|
140 |
# Create values for the three 'delta across pixel boundaries' plots: |
|
141 |
# 1) Y-Axis: columnIDs |
|
142 |
# 2) Y-Axis: CDEM elevations |
|
143 |
# 3) Y-Axis: |
|
144 |
|
|
145 |
deltaBoundaryASTER <- northRowTbl$diffNorthMosaicCDEM - northRowTbl$diffSouthMosaicCDEM |
|
146 |
deltaBoundaryBorder <- borderRowTbl$diffNorthMosaicCDEM - borderRowTbl$diffSouthMosaicCDEM |
|
147 |
deltaBoundarySRTM <- southRowTbl$diffNorthMosaicCDEM - southRowTbl$diffSouthMosaicCDEM |
|
148 |
|
|
149 |
normDeltaBoundaryASTER <- (deltaBoundaryASTER / northRowTbl$cdemNorth * 100) |
|
150 |
normDeltaBoundaryBorder <- (deltaBoundaryBorder / borderRowTbl$cdemNorth * 100) |
|
151 |
normDeltaBoundarySRTM <- (deltaBoundarySRTM / southRowTbl$cdemNorth * 100) |
|
152 |
|
|
153 |
par(mfrow=c(3,1)) # Create a set of three column multi-plots |
|
154 |
|
|
155 |
commonXAxis <- c(0,max(pointTable$ColumnID)) |
|
156 |
commonYAxis <- range(c(deltaBoundarySRTM,deltaBoundaryBorder,deltaBoundaryASTER),na.rm=TRUE) |
|
157 |
|
|
158 |
xAxisLbl <- sprintf("M/SD: ASTER: %.2f / %.2f",mean(deltaBoundaryASTER,na.rm=TRUE),sd(deltaBoundaryASTER,na.rm=TRUE)) |
|
159 |
plot(northRowTbl$ColumnID,deltaBoundaryASTER,xlim=commonXAxis, ylim=commonYAxis,main="Row Boundary Delta: ASTER",xlab=xAxisLbl,col="red",pch=plotCh1) |
|
160 |
xAxisLbl <- sprintf("M/SD: BORDER: %.2f / %.2f",mean(deltaBoundaryBorder,na.rm=TRUE),sd(deltaBoundaryBorder,na.rm=TRUE)) |
|
161 |
plot(northRowTbl$ColumnID,deltaBoundaryBorder,xlim=commonXAxis, ylim=commonYAxis,main="Row Boundary Delta: Border",sub="E-W Col",xlab=xAxisLbl,col="darkgreen",pch=plotCh2) |
|
162 |
xAxisLbl <- sprintf("M/SD: SRTM: %.2f / %.2f",mean(deltaBoundarySRTM,na.rm=TRUE),sd(deltaBoundarySRTM,na.rm=TRUE)) |
|
163 |
plot(northRowTbl$ColumnID,deltaBoundarySRTM,main="Boundary Delta: SRTM",xlim=commonXAxis, ylim=commonYAxis,xlab=xAxisLbl,col="blue",pch=plotCh3) |
|
164 |
message("ColumnID-X-Axis is done") |
|
165 |
browser() |
|
166 |
#dev.new() |
|
167 |
# par(mfrow=c(3,1)) # Create a three column multi-plot pointTable$diffNorthMosaicCDEM/pointTable$elevNorth * 100)) |
|
168 |
|
|
169 |
commonXAxis <- c(0,max(pointTable$cdemNorth)) |
|
170 |
commonYAxis <- range(c(deltaBoundarySRTM,deltaBoundaryBorder,deltaBoundaryASTER),na.rm=TRUE) |
|
171 |
|
|
172 |
xAxisLbl <- sprintf("M/SD: ASTER: %.2f / %.2f",mean(deltaBoundaryASTER,na.rm=TRUE),sd(deltaBoundaryASTER,na.rm=TRUE)) |
|
173 |
plot(northRowTbl$cdemNorth,deltaBoundaryASTER,xlim=commonXAxis, ylim=commonYAxis,main="Boundary Delta (CDEM Elev): ASTER",xlab=xAxisLbl,col="red",pch=plotCh1) |
|
174 |
xAxisLbl <- sprintf("M/SD: BORDER: %.2f / %.2f",mean(deltaBoundaryBorder,na.rm=TRUE),sd(deltaBoundaryBorder,na.rm=TRUE)) |
|
175 |
plot(northRowTbl$cdemNorth,deltaBoundaryBorder,xlim=commonXAxis, ylim=commonYAxis,main="Boundary Delta (CDEM Elev): Border",sub="vs Elev",xlab=xAxisLbl,col="darkgreen",pch=plotCh2) |
|
176 |
xAxisLbl <- sprintf("M/SD: SRTM: %.2f / %.2f",mean(deltaBoundarySRTM,na.rm=TRUE),sd(deltaBoundarySRTM,na.rm=TRUE)) |
|
177 |
plot(northRowTbl$cdemNorth,deltaBoundarySRTM,main="Boundary Delta (CDEM Elev): SRTM",xlim=commonXAxis, ylim=commonYAxis,xlab=xAxisLbl,col="blue",pch=plotCh3) |
|
178 |
message("ColumnID-CDEM Elevation done") |
|
179 |
browser() |
|
180 |
commonXAxis <- c(0,max(pointTable$cdemNorth)) |
|
181 |
commonYAxis <- range(c(normDeltaBoundarySRTM,normDeltaBoundaryBorder,normDeltaBoundaryASTER),na.rm=TRUE) |
|
182 |
xAxisLbl <- sprintf("M/SD: ASTER: %.2f / %.2f",mean(normDeltaBoundaryASTER,na.rm=TRUE),sd(normDeltaBoundaryASTER,na.rm=TRUE)) |
|
183 |
plot(northRowTbl$cdemNorth,normDeltaBoundaryASTER,xlim=commonXAxis, ylim=commonYAxis,main="Norm Bdry Delta (CDEM Elev): ASTER",xlab=xAxisLbl,col="red",pch=plotCh1) |
|
184 |
xAxisLbl <- sprintf("M/SD: BORDER: %.2f / %.2f",mean(normDeltaBoundaryBorder,na.rm=TRUE),sd(normDeltaBoundaryBorder,na.rm=TRUE)) |
|
185 |
plot(northRowTbl$cdemNorth,normDeltaBoundaryBorder,xlim=commonXAxis, ylim=commonYAxis,main="Norm Bdry Delta (CDEM Elev): Border",sub="vs Elev",xlab=xAxisLbl,col="darkgreen",pch=plotCh2) |
|
186 |
xAxisLbl <- sprintf("M/SD: SRTM: %.2f / %.2f",mean(normDeltaBoundarySRTM,na.rm=TRUE),sd(normDeltaBoundarySRTM,na.rm=TRUE)) |
|
187 |
plot(northRowTbl$cdemNorth,normDeltaBoundarySRTM,main="Norm Bdry Delta (CDEM Elev): SRTM",xlim=commonXAxis, ylim=commonYAxis,xlab=xAxisLbl,col="blue",pch=plotCh3) |
|
188 |
message("NORMALIZED ColumnID-CDEM Elevation done") |
|
189 |
browser() |
|
190 |
commonXAxis <- c(0,max(pointTable$ColumnID)) |
|
191 |
commonYAxis <- range(c(normDeltaBoundarySRTM,normDeltaBoundaryBorder,normDeltaBoundaryASTER),na.rm=TRUE) |
|
192 |
|
|
193 |
xAxisLbl <- sprintf("M/SD: ASTER: %.2f / %.2f",mean(normDeltaBoundaryASTER,na.rm=TRUE),sd(normDeltaBoundaryASTER,na.rm=TRUE)) |
|
194 |
plot(northRowTbl$ColumnID,normDeltaBoundaryASTER,xlim=commonXAxis, ylim=commonYAxis,main="Norm Bdry Delta: ASTER",xlab=xAxisLbl,col="red",pch=plotCh1) |
|
195 |
xAxisLbl <- sprintf("M/SD: BORDER: %.2f / %.2f",mean(normDeltaBoundaryBorder,na.rm=TRUE),sd(normDeltaBoundaryBorder,na.rm=TRUE)) |
|
196 |
plot(northRowTbl$ColumnID,normDeltaBoundaryBorder,xlim=commonXAxis, ylim=commonYAxis,main="Norm Bdry Delta: Border",sub="E-W Col",xlab=xAxisLbl,col="darkgreen",pch=plotCh2) |
|
197 |
xAxisLbl <- sprintf("M/SD: SRTM: %.2f / %.2f",mean(normDeltaBoundarySRTM,na.rm=TRUE),sd(normDeltaBoundarySRTM,na.rm=TRUE)) |
|
198 |
plot(northRowTbl$ColumnID,normDeltaBoundarySRTM,main="Norm Bdry Delta: SRTM",xlim=commonXAxis, ylim=commonYAxis,xlab=xAxisLbl,col="blue",pch=plotCh3) |
|
199 |
message("NORMALIZED ColumnID-X-Axis is done...") |
|
200 |
|
|
201 |
# if 'plot flag' is set, send the plots to a JPG file. |
|
202 |
|
|
203 |
if (JpgPlotFileFlag) |
|
204 |
{ |
|
205 |
message("creating JPG plot files...") |
|
206 |
browser() |
|
207 |
jpeg(file="RowBoundaryDeltaColIDXAxisASTER.jpg") |
|
208 |
xAxisLbl <- sprintf("M/SD: ASTER: %.2f / %.2f",mean(deltaBoundaryASTER,na.rm=TRUE),sd(deltaBoundaryASTER,na.rm=TRUE)) |
|
209 |
plot(northRowTbl$ColumnID,deltaBoundaryASTER,xlim=commonXAxis, ylim=commonYAxis,main="Row Boundary Delta: ASTER",xlab=xAxisLbl,col="red",pch=plotCh1) |
|
210 |
dev.off() |
|
211 |
jpeg(file="RowBoundaryDeltaColIDXAxisBORDER.jpg") |
|
212 |
xAxisLbl <- sprintf("M/SD: BORDER: %.2f / %.2f",mean(deltaBoundaryBorder,na.rm=TRUE),sd(deltaBoundaryBorder,na.rm=TRUE)) |
|
213 |
plot(northRowTbl$ColumnID,deltaBoundaryBorder,xlim=commonXAxis, ylim=commonYAxis,main="Row Boundary Delta: Border",sub="E-W Col",xlab=xAxisLbl,col="darkgreen",pch=plotCh2) |
|
214 |
dev.off() |
|
215 |
jpeg(file="RowBoundaryDeltaColIDXAxisSRTM.jpg") |
|
216 |
xAxisLbl <- sprintf("M/SD: SRTM: %.2f / %.2f",mean(deltaBoundarySRTM,na.rm=TRUE),sd(deltaBoundarySRTM,na.rm=TRUE)) |
|
217 |
plot(northRowTbl$ColumnID,deltaBoundarySRTM,main="Row Boundary Delta: SRTM",xlim=commonXAxis, ylim=commonYAxis,xlab=xAxisLbl,col="blue",pch=plotCh3) |
|
218 |
message("ColumnID-X-Axis plots are done") |
|
219 |
#dev.new() |
|
220 |
commonXAxis <- c(0,max(pointTable$cdemNorth)) |
|
221 |
commonYAxis <- range(c(deltaBoundarySRTM,deltaBoundaryBorder,deltaBoundaryASTER),na.rm=TRUE) |
|
222 |
jpeg(file="RowBoundaryDeltaCDEMElevXAxisASTER.jpg") |
|
223 |
xAxisLbl <- sprintf("M/SD: ASTER: %.2f / %.2f",mean(deltaBoundaryASTER,na.rm=TRUE),sd(deltaBoundaryASTER,na.rm=TRUE)) |
|
224 |
plot(northRowTbl$cdemNorth,deltaBoundaryASTER,xlim=commonXAxis, ylim=commonYAxis,main="Boundary Delta (CDEM Elev): ASTER",xlab=xAxisLbl,col="red",pch=plotCh1) |
|
225 |
dev.off() |
|
226 |
jpeg(file="RowBoundaryDeltaCDEMElevXAxisBORDER.jpg") |
|
227 |
xAxisLbl <- sprintf("M/SD: BORDER: %.2f / %.2f",mean(deltaBoundaryBorder,na.rm=TRUE),sd(deltaBoundaryBorder,na.rm=TRUE)) |
|
228 |
plot(northRowTbl$cdemNorth,deltaBoundaryBorder,xlim=commonXAxis, ylim=commonYAxis,main="Boundary Delta (CDEM Elev): Border",sub="vs Elev",xlab=xAxisLbl,col="darkgreen",pch=plotCh2) |
|
229 |
dev.off() |
|
230 |
jpeg(file="RowBoundaryDeltaCDEMElevXAxisCDEM.jpg") |
|
231 |
xAxisLbl <- sprintf("M/SD: SRTM: %.2f / %.2f",mean(deltaBoundarySRTM,na.rm=TRUE),sd(deltaBoundarySRTM,na.rm=TRUE)) |
|
232 |
plot(northRowTbl$cdemNorth,deltaBoundarySRTM,main="Boundary Delta (CDEM Elev): SRTM",xlim=commonXAxis, ylim=commonYAxis,xlab=xAxisLbl,col="blue",pch=plotCh3) |
|
233 |
dev.off() |
|
234 |
message("ColumnID-CDEM Elevation Plots are done") |
|
235 |
#browser() |
|
236 |
commonXAxis <- c(0,max(pointTable$cdemNorth)) |
|
237 |
commonYAxis <- range(c(normDeltaBoundarySRTM,normDeltaBoundaryBorder,normDeltaBoundaryASTER),na.rm=TRUE) |
|
238 |
jpeg(file="NormRowBoundaryDeltaColIDXAxisASTER.jpg") |
|
239 |
xAxisLbl <- sprintf("M/SD: ASTER: %.2f / %.2f",mean(normDeltaBoundaryASTER,na.rm=TRUE),sd(normDeltaBoundaryASTER,na.rm=TRUE)) |
|
240 |
plot(northRowTbl$cdemNorth,normDeltaBoundaryASTER,xlim=commonXAxis, ylim=commonYAxis,main="Norm Bdry Delta (CDEM Elev): ASTER",xlab=xAxisLbl,col="red",pch=plotCh1) |
|
241 |
dev.off() |
|
242 |
jpeg(file="NormRowBoundaryDeltaColIDXAxisBORDER.jpg") |
|
243 |
xAxisLbl <- sprintf("M/SD: BORDER: %.2f / %.2f",mean(normDeltaBoundaryBorder,na.rm=TRUE),sd(normDeltaBoundaryBorder,na.rm=TRUE)) |
|
244 |
plot(northRowTbl$cdemNorth,normDeltaBoundaryBorder,xlim=commonXAxis, ylim=commonYAxis,main="Norm Bdry Delta (CDEM Elev): Border",sub="vs Elev",xlab=xAxisLbl,col="darkgreen",pch=plotCh2) |
|
245 |
dev.off() |
|
246 |
jpeg(file="NormRowBoundaryDeltaColIDXAxisSRTM.jpg") |
|
247 |
xAxisLbl <- sprintf("M/SD: SRTM: %.2f / %.2f",mean(normDeltaBoundarySRTM,na.rm=TRUE),sd(normDeltaBoundarySRTM,na.rm=TRUE)) |
|
248 |
plot(northRowTbl$cdemNorth,normDeltaBoundarySRTM,main="Norm Bdry Delta (CDEM Elev): SRTM",xlim=commonXAxis, ylim=commonYAxis,xlab=xAxisLbl,col="blue",pch=plotCh3) |
|
249 |
dev.off() |
|
250 |
message("NORMALIZED ColumnID-CDEM Elevation Plots are done") |
|
251 |
browser() |
|
252 |
commonXAxis <- c(0,max(pointTable$ColumnID)) |
|
253 |
commonYAxis <- range(c(normDeltaBoundarySRTM,normDeltaBoundaryBorder,normDeltaBoundaryASTER),na.rm=TRUE) |
|
254 |
jpeg(file="NormRowBoundaryDeltaCDEMElevXAxisASTER.jpg") |
|
255 |
xAxisLbl <- sprintf("M/SD: ASTER: %.2f / %.2f",mean(normDeltaBoundaryASTER,na.rm=TRUE),sd(normDeltaBoundaryASTER,na.rm=TRUE)) |
|
256 |
plot(northRowTbl$ColumnID,normDeltaBoundaryASTER,xlim=commonXAxis, ylim=commonYAxis,main="Norm Bdry Delta: ASTER",xlab=xAxisLbl,col="red",pch=plotCh1) |
|
257 |
dev.off() |
|
258 |
jpeg(file="NormRowBoundaryDeltaCDEMElevXAxisBORDER.jpg") |
|
259 |
xAxisLbl <- sprintf("M/SD: BORDER: %.2f / %.2f",mean(normDeltaBoundaryBorder,na.rm=TRUE),sd(normDeltaBoundaryBorder,na.rm=TRUE)) |
|
260 |
plot(northRowTbl$ColumnID,normDeltaBoundaryBorder,xlim=commonXAxis, ylim=commonYAxis,main="Norm Bdry Delta: Border",sub="E-W Col",xlab=xAxisLbl,col="darkgreen",pch=plotCh2) |
|
261 |
dev.off() |
|
262 |
jpeg(file="NormRowBoundaryDeltaCDEMElevXAxisSRTM.jpg") |
|
263 |
xAxisLbl <- sprintf("M/SD: SRTM: %.2f / %.2f",mean(normDeltaBoundarySRTM,na.rm=TRUE),sd(normDeltaBoundarySRTM,na.rm=TRUE)) |
|
264 |
plot(northRowTbl$ColumnID,normDeltaBoundarySRTM,main="Norm Bdry Delta: SRTM",xlim=commonXAxis, ylim=commonYAxis,xlab=xAxisLbl,col="blue",pch=plotCh3) |
|
265 |
dev.off() |
|
266 |
message("NORMALIZED ColumnID-X-Axis Plot files have been created..") |
|
267 |
} |
|
268 |
message("...All plots created - hit key to delete them...") |
|
269 |
browser() |
|
270 |
graphics.off() |
|
271 |
} |
terrain/rscripts/CreateImageDiffPlotsOverlayNewPlotsLowessLines.R | ||
---|---|---|
1 |
############################################################################################## |
|
2 |
# |
|
3 |
# CreateImageDiffPlots |
|
4 |
# |
|
5 |
# R script generates collection of nine plots that display the distributions of populations of |
|
6 |
# three elevation pixel pairs in proximity to the border between ASTER and STRM data in mosaic |
|
7 |
# images# under development for the Environment and Organisms project. |
|
8 |
# |
|
9 |
# |
|
10 |
# Inputs: |
|
11 |
# 1) Comma Separated Value (CSV) table containing randomly-sampled elevation value pairs, |
|
12 |
# extracted from ASTER/CGIAR mosaic and CDEM images, created by the R script: makeImagePairTable.r |
|
13 |
# Note: At present, be sure that this file has been sorted by column 1 (ColumnID) in Excel |
|
14 |
# before using in this program. |
|
15 |
# NOTE: This filename is set in the body of the script. |
|
16 |
# |
|
17 |
# 2) sampling factor: integer (range=1 to number of recors in input table. Determines |
|
18 |
# the size of randomly-selected sampe of total table record 'triplets' (north, border, |
|
19 |
# and south) rows of each column sample) to be displayed in the plots: |
|
20 |
# sampling factor = 1 : plot every table record |
|
21 |
# 10 : plot a random sample containing 1/10th of records |
|
22 |
# 100 : plot random sample containing 1/100th of records. |
|
23 |
# 3) JpgPlotFileFlag: Set to TRUE to have *individual* plots written to JPG files. |
|
24 |
# |
|
25 |
# To run: |
|
26 |
# |
|
27 |
# 1) place this file and the input file "tableForMark4000_5_8_SortColID.csv" in folder |
|
28 |
# 2) start R |
|
29 |
# 3) > source("CreateImageDiffPlotsOverlay.r") |
|
30 |
# 4) > CreateImageDiffPlots(sampling factor,JpegFlag) |
|
31 |
# < press <cr> key to view plots sequentially |
|
32 |
# |
|
33 |
# TODO: add symbol legend to each plot. |
|
34 |
# Author: Rick Reeves, NCEAS |
|
35 |
# May 14, 2011 |
|
36 |
# May 17, 2011: This version generates 'delta scatterplots' specified by Mark and Jim. |
|
37 |
# May 18, 2011: If JpgPlotFlag set, write individual plot files to JPG files. |
|
38 |
# May 22, 2011: add Lowess lines to center of scatterplot distribution |
|
39 |
############################################################################################## |
|
40 |
CreateImageDiffPlotsNewLL <- function(plotSampFact = 1,JpgPlotFileFlag = TRUE) |
|
41 |
{ |
|
42 |
|
|
43 |
# Check plotSampleFact rangels -l *.tif |
|
44 |
|
|
45 |
if (plotSampFact < 1) |
|
46 |
plotSampFact = 1 |
|
47 |
|
|
48 |
# Read input table that was sorted OFFLINE in Excel on the first column (ColumnID) |
|
49 |
|
|
50 |
pointTable <-read.csv("pixelPairs36000_5_8EvenSortCol1.csv") |
|
51 |
# pointTable <-read.csv("pixelPairs36000_Exa.csv") |
|
52 |
# Table created by randomly sampling from two superimposed |
|
53 |
# image: |
|
54 |
# 1) DOM mosaic image comprised of ASTER and SRTM components. |
|
55 |
# 2) 'Baseline' Canadian DEM (CDEM) image. |
|
56 |
# |
|
57 |
# The input table contains three rows for each randomly-selected |
|
58 |
# pixel pair from both images. Each row contains two pixel pairs, |
|
59 |
# the first pair drawn from the image mosaic, the second pair |
|
60 |
# drawn from the CDEM image: |
|
61 |
# First pair: North pixel, South pixel (ASTER/SRTM mosaic) |
|
62 |
# Second pair: North pixel, South pixel (CDEM) |
|
63 |
# |
|
64 |
# The first row of each 'triplet' contains pixel pairs North of border, |
|
65 |
# The second row contains pixel pairs spanning border, |
|
66 |
# The third row contains pixel pairs South of border, |
|
67 |
# |
|
68 |
# This script generates a series of plots that display |
|
69 |
# differences between: |
|
70 |
# 1) The mosaic and CDEM images |
|
71 |
# 2) Image pixels on and away from the ASTER / SRTM boundary. |
|
72 |
# |
|
73 |
northRowIndexes = seq(from=1, to=(nrow(pointTable) - 3),by=3) |
|
74 |
borderRowIndexes = seq(from=2, to=(nrow(pointTable) - 1),by=3) |
|
75 |
southRowIndexes = seq(from=3, to=(nrow(pointTable)),by=3) |
|
76 |
# |
|
77 |
# calculate and append the difference between elevations |
|
78 |
# and CDEM |
|
79 |
# these lines create the inputs for differnce image plots for each of three |
|
80 |
# pixel pair subsets: North of border (All Aster), border (combo Aster/Srtm), |
|
81 |
# South of border (all Srtm) |
|
82 |
# |
|
83 |
# First, add the 'difference columns' to the entire table |
|
84 |
# |
|
85 |
pointTable <-cbind(pointTable,(pointTable$elevNorth - pointTable$elevSouth)) |
|
86 |
pointTable <-cbind(pointTable,(pointTable$cdemNorth - pointTable$cdemSouth)) |
|
87 |
pointTable <-cbind(pointTable,(pointTable$elevNorth - pointTable$cdemNorth)) |
|
88 |
pointTable <-cbind(pointTable,(pointTable$elevSouth - pointTable$cdemSouth)) |
|
89 |
# |
|
90 |
colnames(pointTable)[6] <- "diffMosaicNorthSouth" |
|
91 |
colnames(pointTable)[7] <- "diffCDEMNorthSouth" |
|
92 |
colnames(pointTable)[8] <- "diffNorthMosaicCDEM" |
|
93 |
colnames(pointTable)[9] <- "diffSouthMosaicCDEM" |
|
94 |
|
|
95 |
# add a placeholder for the 'boundary' value, across each table |
|
96 |
|
|
97 |
# pointTable <-cbind(pointTable,(-1)) |
|
98 |
|
|
99 |
# colnames(pointTable)[10] <- "deltaAcrossBorder" |
|
100 |
|
|
101 |
# Difference between Mosaic (ASTER or CGIAR or border) |
|
102 |
# and CDEM elevation as pertentage of the mosaic elevation |
|
103 |
|
|
104 |
pointTable <-cbind(pointTable,(pointTable$diffNorthMosaicCDEM/pointTable$elevNorth * 100)) |
|
105 |
pointTable <-cbind(pointTable,(pointTable$diffSouthMosaicCDEM/pointTable$elevSouth * 100)) |
|
106 |
|
|
107 |
colnames(pointTable)[10] <- "magDiffMosaicCDEMNorthPct" |
|
108 |
colnames(pointTable)[11] <- "magDiffMosaicCDEMSouthPct" |
|
109 |
|
|
110 |
# For the plots, subdivide the table into three segments: |
|
111 |
# rows north of border |
|
112 |
# rows crossing border |
|
113 |
# rows south of border |
|
114 |
|
|
115 |
northRowTblAll = pointTable[northRowIndexes,] |
|
116 |
borderRowTblAll = pointTable[borderRowIndexes,] |
|
117 |
southRowTblAll = pointTable[southRowIndexes,] |
|
118 |
|
|
119 |
subset <- 1:nrow(northRowTblAll) |
|
120 |
|
|
121 |
randSub <- sample(subset,as.integer(length(subset) / plotSampFact)) |
|
122 |
|
|
123 |
northRowTbl <- northRowTblAll[randSub,] |
|
124 |
borderRowTbl <- borderRowTblAll[randSub,] |
|
125 |
southRowTbl <- southRowTblAll[randSub,] |
|
126 |
|
|
127 |
message("hit key to create each plot...") |
|
128 |
browser() |
|
129 |
|
|
130 |
# Three plotting characters used |
|
131 |
|
|
132 |
plotCh1 <- 17 # 'north' (aster) points |
|
133 |
plotCh2 <- 18 # 'border' (aster+srtm) points |
|
134 |
plotCh3 <- 20 # 'south' (srtm) points |
|
135 |
lowessLineColor <- "yellow" |
|
136 |
# NEW: Three plots: The difference between Mosaic and CDEM for pixels along |
|
137 |
# each of three border edges: North (ASTER), Border, South (SRTM) |
|
138 |
# for now, north, border, south have separate plots |
|
139 |
|
|
140 |
# We need to tailor the plot 'triplet' X and Y axes to the dynamic ranges of all three data sets. |
|
141 |
|
|
142 |
# Create values for the three 'delta across pixel boundaries' plots: |
|
143 |
# 1) Y-Axis: columnIDs |
|
144 |
# 2) Y-Axis: CDEM elevations |
|
145 |
# 3) Y-Axis: |
|
146 |
|
|
147 |
deltaBoundaryASTER <- northRowTbl$diffNorthMosaicCDEM - northRowTbl$diffSouthMosaicCDEM |
|
148 |
deltaBoundaryBorder <- borderRowTbl$diffNorthMosaicCDEM - borderRowTbl$diffSouthMosaicCDEM |
|
149 |
deltaBoundarySRTM <- southRowTbl$diffNorthMosaicCDEM - southRowTbl$diffSouthMosaicCDEM |
|
150 |
|
|
151 |
normDeltaBoundaryASTER <- (deltaBoundaryASTER / northRowTbl$cdemNorth * 100) |
|
152 |
normDeltaBoundaryBorder <- (deltaBoundaryBorder / borderRowTbl$cdemNorth * 100) |
|
153 |
normDeltaBoundarySRTM <- (deltaBoundarySRTM / southRowTbl$cdemNorth * 100) |
|
154 |
|
|
155 |
par(mfrow=c(1,3)) # Create a set of three column multi-plots |
|
156 |
|
|
157 |
commonXAxis <- c(0,max(pointTable$ColumnID)) |
|
158 |
commonYAxis <- range(c(deltaBoundarySRTM,deltaBoundaryBorder,deltaBoundaryASTER),na.rm=TRUE) |
|
159 |
|
|
160 |
xAxisLbl <- sprintf("M/SD: ASTER: %.2f / %.2f",mean(deltaBoundaryASTER,na.rm=TRUE),sd(deltaBoundaryASTER,na.rm=TRUE)) |
|
161 |
plot(northRowTbl$ColumnID,deltaBoundaryASTER,xlim=commonXAxis, ylim=commonYAxis,main="Delta: ASTER - CDEM",xlab=xAxisLbl,col="red",pch=plotCh1) |
|
162 |
vv <- cbind(northRowTbl$ColumnID,deltaBoundaryASTER) |
|
163 |
# vx <- vv[-(which(is.na(vv[,"deltaBoundaryASTER"]))),] |
|
164 |
vx <- vv[(which(!is.na(vv[,"deltaBoundaryASTER"]))),] |
|
165 |
lines(stats::lowess(vx),col=lowessLineColor) |
|
166 |
|
|
167 |
xAxisLbl <- sprintf("M/SD: BORDER: %.2f / %.2f",mean(deltaBoundaryBorder,na.rm=TRUE),sd(deltaBoundaryBorder,na.rm=TRUE)) |
|
168 |
plot(northRowTbl$ColumnID,deltaBoundaryBorder,xlim=commonXAxis, ylim=commonYAxis,main="Delta: Bdry Mix - CDEM",sub="X Axis: West-East Columns",xlab=xAxisLbl,col="darkgreen",pch=plotCh2) |
|
169 |
vv <- cbind(northRowTbl$ColumnID,deltaBoundaryBorder) |
|
170 |
vx <- vv[(which(!is.na(vv[,"deltaBoundaryBorder"]))),] |
|
171 |
lines(stats::lowess(vx),col=lowessLineColor) |
|
172 |
|
|
173 |
xAxisLbl <- sprintf("M/SD: SRTM: %.2f / %.2f",mean(deltaBoundarySRTM,na.rm=TRUE),sd(deltaBoundarySRTM,na.rm=TRUE)) |
|
174 |
plot(northRowTbl$ColumnID,deltaBoundarySRTM,main="Delta: SRTM - CDEM",xlim=commonXAxis, ylim=commonYAxis,xlab=xAxisLbl,col="blue",pch=plotCh3) |
|
175 |
vv <- cbind(northRowTbl$ColumnID,deltaBoundarySRTM) |
|
176 |
vx <- vv[(which(!is.na(vv[,"deltaBoundarySRTM"]))),] |
|
177 |
lines(stats::lowess(vx),col=lowessLineColor) |
|
178 |
|
|
179 |
message("ColumnID-X-Axis is done") |
|
180 |
browser() |
|
181 |
#dev.new() |
|
182 |
# par(mfrow=c(3,1)) # Create a three column multi-plot pointTable$diffNorthMosaicCDEM/pointTable$elevNorth * 100)) |
|
183 |
|
|
184 |
commonXAxis <- c(0,max(pointTable$cdemNorth,na.rm=TRUE)) |
|
185 |
commonYAxis <- range(c(deltaBoundarySRTM,deltaBoundaryBorder,deltaBoundaryASTER),na.rm=TRUE) |
|
186 |
|
|
187 |
# northDelta.lo <- loess(deltaBoundaryASTER ~ deltaBoundaryASTER,northRowTbl) |
|
188 |
xAxisLbl <- sprintf("M/SD: ASTER: %.2f / %.2f",mean(deltaBoundaryASTER,na.rm=TRUE),sd(deltaBoundaryASTER,na.rm=TRUE)) |
|
189 |
plot(northRowTbl$cdemNorth,deltaBoundaryASTER,xlim=commonXAxis, ylim=commonYAxis,main="Delta: ASTER - CDEM",xlab=xAxisLbl,col="red",pch=plotCh1) |
|
190 |
vv <- cbind(northRowTbl$cdemNorth,deltaBoundaryASTER) |
|
191 |
vx <- vv[(which(!is.na(vv[,"deltaBoundaryASTER"]))),] |
|
192 |
lines(stats::lowess(vx),col=lowessLineColor) |
|
193 |
|
|
194 |
xAxisLbl <- sprintf("M/SD: BORDER: %.2f / %.2f",mean(deltaBoundaryBorder,na.rm=TRUE),sd(deltaBoundaryBorder,na.rm=TRUE)) |
|
195 |
plot(northRowTbl$cdemNorth,deltaBoundaryBorder,xlim=commonXAxis, ylim=commonYAxis,main=" Delta: Bdy Mix - CDEM",sub="X Axis: CDEM Elevation",xlab=xAxisLbl,col="darkgreen",pch=plotCh2) |
|
196 |
vv <- cbind(northRowTbl$cdemNorth,deltaBoundaryBorder) |
|
197 |
vx <- vv[(which(!is.na(vv[,"deltaBoundaryBorder"]))),] |
|
198 |
lines(stats::lowess(vx),col=lowessLineColor) |
|
199 |
|
|
200 |
xAxisLbl <- sprintf("M/SD: SRTM: %.2f / %.2f",mean(deltaBoundarySRTM,na.rm=TRUE),sd(deltaBoundarySRTM,na.rm=TRUE)) |
|
201 |
plot(northRowTbl$cdemNorth,deltaBoundarySRTM,main="Delta: SRTM - CDEM",xlim=commonXAxis, ylim=commonYAxis,xlab=xAxisLbl,col="blue",pch=plotCh3) |
|
202 |
vv <- cbind(northRowTbl$cdemNorth,deltaBoundarySRTM) |
|
203 |
vx <- vv[(which(!is.na(vv[,"deltaBoundarySRTM"]))),] |
|
204 |
lines(stats::lowess(vx),col=lowessLineColor) |
|
205 |
message("ColumnID-CDEM Elevation done") |
|
206 |
browser() |
|
207 |
commonXAxis <- c(0,max(pointTable$cdemNorth,na.rm=TRUE)) |
|
208 |
commonYAxis <- range(c(normDeltaBoundarySRTM,normDeltaBoundaryBorder,normDeltaBoundaryASTER),na.rm=TRUE) |
|
209 |
|
|
210 |
xAxisLbl <- sprintf("M/SD: ASTER: %.2f / %.2f",mean(normDeltaBoundaryASTER,na.rm=TRUE),sd(normDeltaBoundaryASTER,na.rm=TRUE)) |
|
211 |
plot(northRowTbl$cdemNorth,normDeltaBoundaryASTER,xlim=commonXAxis, ylim=commonYAxis,main="Delta Norm Elev: ASTER",xlab=xAxisLbl,col="red",pch=plotCh1) |
|
212 |
vv <- cbind(northRowTbl$cdemNorth,normDeltaBoundaryASTER) |
|
213 |
vx <- vv[(which(!is.na(vv[,"normDeltaBoundaryASTER"]))),] |
|
214 |
lines(stats::lowess(vx),col=lowessLineColor) |
|
215 |
|
|
216 |
xAxisLbl <- sprintf("M/SD: BORDER: %.2f / %.2f",mean(normDeltaBoundaryBorder,na.rm=TRUE),sd(normDeltaBoundaryBorder,na.rm=TRUE)) |
|
217 |
plot(northRowTbl$cdemNorth,normDeltaBoundaryBorder,xlim=commonXAxis, ylim=commonYAxis,main="Delta Norm Elev: Border",sub="X Axis: CDEM Elevation",xlab=xAxisLbl,col="darkgreen",pch=plotCh2) |
|
218 |
vv <- cbind(northRowTbl$cdemNorth,normDeltaBoundaryBorder) |
|
219 |
vx <- vv[(which(!is.na(vv[,"normDeltaBoundaryBorder"]))),] |
|
220 |
lines(stats::lowess(vx),col=lowessLineColor) |
|
221 |
|
|
222 |
xAxisLbl <- sprintf("M/SD: SRTM: %.2f / %.2f",mean(normDeltaBoundarySRTM,na.rm=TRUE),sd(normDeltaBoundarySRTM,na.rm=TRUE)) |
|
223 |
plot(northRowTbl$cdemNorth,normDeltaBoundarySRTM,main="Delta Norm Elev: SRTM",xlim=commonXAxis, ylim=commonYAxis,xlab=xAxisLbl,col="blue",pch=plotCh3) |
|
224 |
vv <- cbind(northRowTbl$cdemNorth,normDeltaBoundarySRTM) |
|
225 |
vx <- vv[(which(!is.na(vv[,"normDeltaBoundarySRTM"]))),] |
|
226 |
lines(stats::lowess(vx),col=lowessLineColor) |
|
227 |
message("NORMALIZED ColumnID-CDEM Elevation done") |
|
228 |
browser() |
|
229 |
commonXAxis <- c(0,max(pointTable$cdemNorth,na.rm=TRUE)) |
|
230 |
commonYAxis <- range(c(northRowTbl$magDiffMosaicCDEMNorthPct,borderRowTbl$magDiffMosaicCDEMNorthPct,southRowTbl$magDiffMosaicCDEMNorthPct),na.rm=TRUE) |
|
231 |
|
|
232 |
xAxisLbl <- sprintf("M/SD: ASTER: %.2f / %.2f",mean(northRowTbl$magDiffMosaicCDEMNorthPct,na.rm=TRUE),sd(northRowTbl$magDiffMosaicCDEMNorthPct,na.rm=TRUE)) |
|
233 |
plot(northRowTbl$cdemNorth,northRowTbl$magDiffMosaicCDEMNorthPct,xlim=commonXAxis, ylim=commonYAxis,main="Delta Vs Elev Mag: ASTER",xlab=xAxisLbl,col="red",pch=plotCh1) |
|
234 |
vv <- cbind(northRowTbl$cdemNorth,northRowTbl$magDiffMosaicCDEMNorthPct) |
|
235 |
vx <- vv[(which(!is.na(vv[,2]))),] |
|
236 |
lines(stats::lowess(vx),col=lowessLineColor) |
|
237 |
|
|
238 |
xAxisLbl <- sprintf("M/SD: BORDER: %.2f / %.2f",mean(borderRowTbl$magDiffMosaicCDEMNorthPct,na.rm=TRUE),sd(borderRowTbl$magDiffMosaicCDEMNorthPct,na.rm=TRUE)) |
|
239 |
plot(northRowTbl$cdemNorth,borderRowTbl$magDiffMosaicCDEMNorthPct,xlim=commonXAxis, ylim=commonYAxis,main="Delta Vs Elev Mag:: Border",sub="E-W Col",xlab=xAxisLbl,col="darkgreen",pch=plotCh2) |
|
240 |
vv <- cbind(northRowTbl$cdemNorth,deltaBoundarySRTM) |
|
241 |
vx <- vv[(which(!is.na(vv[,2]))),] |
|
242 |
lines(stats::lowess(vx),col=lowessLineColor) |
|
243 |
|
|
244 |
xAxisLbl <- sprintf("M/SD: SRTM: %.2f / %.2f",mean(southRowTbl$magDiffMosaicCDEMNorthPct,na.rm=TRUE),sd(southRowTbl$magDiffMosaicCDEMNorthPct,na.rm=TRUE)) |
|
245 |
plot(northRowTbl$cdemNorth,southRowTbl$magDiffMosaicCDEMNorthPct,main="Delta Vs Elev Mag:: SRTM",xlim=commonXAxis, ylim=commonYAxis,xlab=xAxisLbl,col="blue",pch=plotCh3) |
|
246 |
vv <- cbind(northRowTbl$cdemNorth,southRowTbl$magDiffMosaicCDEMNorthPct) |
|
247 |
vx <- vv[(which(!is.na(vv[,2]))),] |
|
248 |
lines(stats::lowess(vx),col=lowessLineColor) |
|
249 |
message("Delta as Fcn Elev Mag-X-Axis is done...") |
|
250 |
|
|
251 |
# if 'plot flag' is set, send the plots to a JPG file. |
|
252 |
|
|
253 |
if (JpgPlotFileFlag) |
|
254 |
{ |
|
255 |
message("creating JPG plot files...") |
|
256 |
browser() |
|
257 |
jpeg(file="RowBoundaryDeltaColIDXAxisASTER.jpg") |
|
258 |
xAxisLbl <- sprintf("M/SD: ASTER: %.2f / %.2f",mean(deltaBoundaryASTER,na.rm=TRUE),sd(deltaBoundaryASTER,na.rm=TRUE)) |
|
259 |
plot(northRowTbl$ColumnID,deltaBoundaryASTER,xlim=commonXAxis, ylim=commonYAxis,main="Row Boundary Delta: ASTER",xlab=xAxisLbl,col="red",pch=plotCh1) |
|
260 |
dev.off() |
|
261 |
jpeg(file="RowBoundaryDeltaColIDXAxisBORDER.jpg") |
|
262 |
xAxisLbl <- sprintf("M/SD: BORDER: %.2f / %.2f",mean(deltaBoundaryBorder,na.rm=TRUE),sd(deltaBoundaryBorder,na.rm=TRUE)) |
|
263 |
plot(northRowTbl$ColumnID,deltaBoundaryBorder,xlim=commonXAxis, ylim=commonYAxis,main="Row Boundary Delta: Border",sub="E-W Col",xlab=xAxisLbl,col="darkgreen",pch=plotCh2) |
|
264 |
dev.off() |
|
265 |
jpeg(file="RowBoundaryDeltaColIDXAxisSRTM.jpg") |
|
266 |
xAxisLbl <- sprintf("M/SD: SRTM: %.2f / %.2f",mean(deltaBoundarySRTM,na.rm=TRUE),sd(deltaBoundarySRTM,na.rm=TRUE)) |
|
267 |
plot(northRowTbl$ColumnID,deltaBoundarySRTM,main="Row Boundary Delta: SRTM",xlim=commonXAxis, ylim=commonYAxis,xlab=xAxisLbl,col="blue",pch=plotCh3) |
|
268 |
message("ColumnID-X-Axis plots are done") |
|
269 |
#dev.new() |
|
270 |
commonXAxis <- c(0,max(pointTable$cdemNorth)) |
|
271 |
commonYAxis <- range(c(deltaBoundarySRTM,deltaBoundaryBorder,deltaBoundaryASTER),na.rm=TRUE) |
|
272 |
jpeg(file="RowBoundaryDeltaCDEMElevXAxisASTER.jpg") |
|
273 |
xAxisLbl <- sprintf("M/SD: ASTER: %.2f / %.2f",mean(deltaBoundaryASTER,na.rm=TRUE),sd(deltaBoundaryASTER,na.rm=TRUE)) |
|
274 |
plot(northRowTbl$cdemNorth,deltaBoundaryASTER,xlim=commonXAxis, ylim=commonYAxis,main="Boundary Delta (CDEM Elev): ASTER",xlab=xAxisLbl,col="red",pch=plotCh1) |
|
275 |
dev.off() |
|
276 |
jpeg(file="RowBoundaryDeltaCDEMElevXAxisBORDER.jpg") |
|
277 |
xAxisLbl <- sprintf("M/SD: BORDER: %.2f / %.2f",mean(deltaBoundaryBorder,na.rm=TRUE),sd(deltaBoundaryBorder,na.rm=TRUE)) |
|
278 |
plot(northRowTbl$cdemNorth,deltaBoundaryBorder,xlim=commonXAxis, ylim=commonYAxis,main="Boundary Delta (CDEM Elev): Border",sub="vs Elev",xlab=xAxisLbl,col="darkgreen",pch=plotCh2) |
|
279 |
dev.off() |
|
280 |
jpeg(file="RowBoundaryDeltaCDEMElevXAxisCDEM.jpg") |
|
281 |
xAxisLbl <- sprintf("M/SD: SRTM: %.2f / %.2f",mean(deltaBoundarySRTM,na.rm=TRUE),sd(deltaBoundarySRTM,na.rm=TRUE)) |
|
282 |
plot(northRowTbl$cdemNorth,deltaBoundarySRTM,main="Boundary Delta (CDEM Elev): SRTM",xlim=commonXAxis, ylim=commonYAxis,xlab=xAxisLbl,col="blue",pch=plotCh3) |
|
283 |
dev.off() |
|
284 |
message("ColumnID-CDEM Elevation Plots are done") |
|
285 |
#browser() |
|
286 |
commonXAxis <- c(0,max(pointTable$cdemNorth)) |
|
287 |
commonYAxis <- range(c(normDeltaBoundarySRTM,normDeltaBoundaryBorder,normDeltaBoundaryASTER),na.rm=TRUE) |
|
288 |
jpeg(file="NormRowBoundaryDeltaColIDXAxisASTER.jpg") |
|
289 |
xAxisLbl <- sprintf("M/SD: ASTER: %.2f / %.2f",mean(normDeltaBoundaryASTER,na.rm=TRUE),sd(normDeltaBoundaryASTER,na.rm=TRUE)) |
|
290 |
plot(northRowTbl$cdemNorth,normDeltaBoundaryASTER,xlim=commonXAxis, ylim=commonYAxis,main="Norm Bdry Delta (CDEM Elev): ASTER",xlab=xAxisLbl,col="red",pch=plotCh1) |
|
291 |
dev.off() |
|
292 |
jpeg(file="NormRowBoundaryDeltaColIDXAxisBORDER.jpg") |
|
293 |
xAxisLbl <- sprintf("M/SD: BORDER: %.2f / %.2f",mean(normDeltaBoundaryBorder,na.rm=TRUE),sd(normDeltaBoundaryBorder,na.rm=TRUE)) |
|
294 |
plot(northRowTbl$cdemNorth,normDeltaBoundaryBorder,xlim=commonXAxis, ylim=commonYAxis,main="Norm Bdry Delta (CDEM Elev): Border",sub="vs Elev",xlab=xAxisLbl,col="darkgreen",pch=plotCh2) |
|
295 |
dev.off() |
|
296 |
jpeg(file="NormRowBoundaryDeltaColIDXAxisSRTM.jpg") |
|
297 |
xAxisLbl <- sprintf("M/SD: SRTM: %.2f / %.2f",mean(normDeltaBoundarySRTM,na.rm=TRUE),sd(normDeltaBoundarySRTM,na.rm=TRUE)) |
|
298 |
plot(northRowTbl$cdemNorth,normDeltaBoundarySRTM,main="Norm Bdry Delta (CDEM Elev): SRTM",xlim=commonXAxis, ylim=commonYAxis,xlab=xAxisLbl,col="blue",pch=plotCh3) |
|
299 |
dev.off() |
|
300 |
message("NORMALIZED ColumnID-CDEM Elevation Plots are done") |
|
301 |
browser() |
|
302 |
commonXAxis <- c(0,max(pointTable$ColumnID)) |
|
303 |
commonYAxis <- range(c(normDeltaBoundarySRTM,normDeltaBoundaryBorder,normDeltaBoundaryASTER),na.rm=TRUE) |
|
304 |
jpeg(file="NormRowBoundaryDeltaCDEMElevXAxisASTER.jpg") |
|
305 |
xAxisLbl <- sprintf("M/SD: ASTER: %.2f / %.2f",mean(normDeltaBoundaryASTER,na.rm=TRUE),sd(normDeltaBoundaryASTER,na.rm=TRUE)) |
|
306 |
plot(northRowTbl$ColumnID,normDeltaBoundaryASTER,xlim=commonXAxis, ylim=commonYAxis,main="Norm Bdry Delta: ASTER",xlab=xAxisLbl,col="red",pch=plotCh1) |
|
307 |
dev.off() |
|
308 |
jpeg(file="NormRowBoundaryDeltaCDEMElevXAxisBORDER.jpg") |
|
309 |
xAxisLbl <- sprintf("M/SD: BORDER: %.2f / %.2f",mean(normDeltaBoundaryBorder,na.rm=TRUE),sd(normDeltaBoundaryBorder,na.rm=TRUE)) |
|
310 |
plot(northRowTbl$ColumnID,normDeltaBoundaryBorder,xlim=commonXAxis, ylim=commonYAxis,main="Norm Bdry Delta: Border",sub="E-W Col",xlab=xAxisLbl,col="darkgreen",pch=plotCh2) |
|
311 |
dev.off() |
|
312 |
jpeg(file="NormRowBoundaryDeltaCDEMElevXAxisSRTM.jpg") |
|
313 |
xAxisLbl <- sprintf("M/SD: SRTM: %.2f / %.2f",mean(normDeltaBoundarySRTM,na.rm=TRUE),sd(normDeltaBoundarySRTM,na.rm=TRUE)) |
|
314 |
plot(northRowTbl$ColumnID,normDeltaBoundarySRTM,main="Norm Bdry Delta: SRTM",xlim=commonXAxis, ylim=commonYAxis,xlab=xAxisLbl,col="blue",pch=plotCh3) |
|
315 |
dev.off() |
|
316 |
message("NORMALIZED ColumnID-X-Axis Plot files have been created..") |
|
317 |
} |
|
318 |
message("...All plots created - hit key to delete them...") |
|
319 |
browser() |
|
320 |
graphics.off() |
|
321 |
} |
terrain/rscripts/DEMBdyFixExpDecay.r | ||
---|---|---|
1 |
|
|
2 |
# DEMBdyFixExpDecay - Implements Exponential Decay method to 'blend' DEM boundary edges |
|
3 |
# |
|
4 |
# General form: decayFactor = e(-(d * DKc)) |
|
5 |
# where d = distance interval from origin (in this case, an image row index) |
|
6 |
# DKc = empirically derived constant |
|
7 |
# |
|
8 |
# |
|
9 |
# Inputs: |
|
10 |
# 1) Blended Aster/SRTM DEM mosaic image. |
|
11 |
# 2) 'SRTM-Only' subimage corresponding to the NORTHernmost part (adjacent to the 60 degree Lat |
|
12 |
# boundary) of the SRTM component of the mosaic. |
|
13 |
# 3) 'Aster-Only' subimage corresponding to the SOUTHernmost part (adjacent to the 60 degree Lat |
|
14 |
# boundary) of the ASTER component of the mosaic. |
|
15 |
# 4) Other parameters, as they are needed |
|
16 |
# |
|
17 |
# To run: |
|
18 |
|
|
19 |
|
|
20 |
# 2) > source("DEMBdyFixExpDecay.r") |
|
21 |
# 3) > DEMBdyFixExpDecay() |
|
22 |
# |
|
23 |
# Author: Rick Reeves, NCEAS |
|
24 |
# June, 2011 |
|
25 |
|
|
26 |
############################################################################################## |
|
27 |
DEMBdyFixExpDecay <- function() |
|
28 |
{ |
|
29 |
require(raster) |
|
30 |
require(rgdal) |
|
31 |
|
|
32 |
# Read the mosaic image and component sub-images: |
|
33 |
# - Aster/SRTM mosaic image (with boundary edge to be fixed) |
|
34 |
# - 'Aster-only' subimage adjacent to Southern edge of 60 degree bounls -s dary, |
|
35 |
# sampled into a grid with same extent and spatial resolution as image mosaic |
|
36 |
# - 'Aster-only' subimage adjacent to Northern edge of 60 degree boundary, |
|
37 |
# sampled into a grid with same extent and spatial resolution as image mosaic |
|
38 |
|
|
39 |
inMosaic <- raster("./AsterSrtmBoth3ArcSecSub.tif") |
|
40 |
|
|
41 |
# Use these objects to get the extents of the subsets within the mosaic |
|
42 |
|
|
43 |
inAsterNorth <- raster("./AsterBdyTestAbove60Sub.tif") |
|
44 |
inAsterSouth <- raster("./AsterBdyTestBelow60Sub.tif") |
|
45 |
|
|
46 |
# Better, read them into a rasterStack |
|
47 |
|
|
48 |
mosaicLayers <- stack("./AsterSRTMBothTestSub.tif", |
|
49 |
"./AsterBdyTestFGAbove60Sub.tif", |
|
50 |
"./AsterBdyTestFGBelow60Sub.tif") |
|
51 |
# |
|
52 |
# Create copy of input raster that we will use to create a 'fixed boundary' iamge |
|
53 |
# Even SIMPLER, according to raster documentation |
|
54 |
# |
|
55 |
outMosaic <- raster(mosaicLayers[[1]]) |
|
56 |
|
|
57 |
sFixedRasterFile <- "TestOutputRasterBdyFix.tif" |
|
58 |
|
|
59 |
# First, get the extent of the 'below 60' sub image in the (big) input raster |
|
60 |
|
|
61 |
northAsterEx <- extent(inAsterNorth) |
|
62 |
southAsterEx <- extent(inAsterSouth) |
|
63 |
|
|
64 |
# Get the values from the mosaic for this extent |
|
65 |
|
|
66 |
southCellsOfInterest <- cellsFromExtent(mosaicLayers[[1]],southAsterEx) |
|
67 |
northCellsOfInterest <- cellsFromExtent(mosaicLayers[[1]],northAsterEx) |
|
68 |
|
|
69 |
# Within the large input raster, we need the index of the first row of the 'Below 60 Aster' subimage. |
|
70 |
# Our plan: to replace this portion of the input mosaic with a linear combination of the original |
|
71 |
# input mosaic COPY (outMosaic) and the 'below 60' raster. |
|
72 |
|
|
73 |
firstNorthSubImgRow <- rowFromCell(mosaicLayers[[1]],northCellsOfInterest[1]) |
|
74 |
lastNorthSubImgRow <- rowFromCell(mosaicLayers[[1]],northCellsOfInterest[(length(northCellsOfInterest) - 1)]) |
|
75 |
northNrowsToProcess <- nrow(inAsterNorth) |
|
76 |
|
|
77 |
firstSouthSubImgRow <- rowFromCell(mosaicLayers[[1]],southCellsOfInterest[1]) |
|
78 |
lastSouthSubImgRow <- rowFromCell(mosaicLayers[[1]],southCellsOfInterest[(length(southCellsOfInterest) - 1)]) |
|
79 |
southNrowsToProcess <- nrow(inAsterSouth) |
|
80 |
|
|
81 |
# create the output raster by copying the input file with 'block copy' |
|
82 |
|
|
83 |
message("Create output (fixed) mosaic") |
|
84 |
#browser() |
|
85 |
bs <- blockSize(mosaicLayers[[1]]) |
|
86 |
outMosaic <- writeStart(outMosaic,sFixedRasterFile, datatype="INT2S", format="GTiff",overwrite=TRUE) |
|
87 |
for (iCtr in 1 : bs$n) |
|
88 |
{ |
|
89 |
mosaicVals <- getValues(mosaicLayers[[1]],row=bs$row[iCtr],nrows=bs$nrows[iCtr]) |
|
90 |
writeValues(outMosaic,mosaicVals,bs$row[iCtr]) |
|
91 |
message(sprintf(".....processed input mosaic block %d",iCtr)) |
|
92 |
} |
|
93 |
outMosaic <- writeStop(outMosaic) |
|
94 |
message("Input mosaic copied to output raster: now, process boundary") |
|
95 |
#browser() |
|
96 |
|
|
97 |
# now, we SHOULD be able to modify outMosaic with new 'column values'. |
|
98 |
|
|
99 |
# note: last north image and first south image rows are the same. |
|
100 |
|
|
101 |
northBorderEdgeRow <- lastNorthSubImgRow |
|
102 |
southBorderEdgeRow <- firstSouthSubImgRow + 1 |
|
103 |
|
|
104 |
# The border 'edge' row is one row below the top of the south sub image |
|
105 |
|
|
106 |
southBrdrRowVals <- getValues(outMosaic,southBorderEdgeRow,1) |
|
107 |
northBrdrRowVals <- getValues(outMosaic,northBorderEdgeRow,1) |
|
108 |
|
|
109 |
brdrRowEdgeDelta <- southBrdrRowVals - northBrdrRowVals |
|
110 |
|
|
111 |
# Process the mosaic 'column-by-column' |
|
112 |
# For each column, extract the LAST 'numBlendRows cells adjacent to the bottomi |
|
113 |
# (southernmost) edge of the ASTER component, next to the SRTM border. |
|
114 |
# Then, moving 'north' along the colum of values, add the current colunn's 'ledge' |
|
115 |
# offset, attenuated by the exponential decay factor for that row. |
|
116 |
# Thus, the SRTM/ASTER 'ledge' is attenuated, the impact is greatest at the boundary, |
|
117 |
# least at the threshold, when the decay factor (empirically determined) goes to zero. |
|
118 |
# |
|
119 |
# Add Exponential Decay constant: empirically selected (try a few, ee if you like result |
|
120 |
# Maybe plot it, see how many rows it takes for the 'effect' of SRTM goes to zero. |
|
121 |
|
|
122 |
dKc <- .045 # empirically determined constant, so that exp - 1 decay goes to zero in the desired number of image rows. |
|
123 |
numBlendRows <- 60 |
|
124 |
begBlendRow <- (northBorderEdgeRow - numBlendRows) + 1 |
|
125 |
# srows <- seq(southBorderEdgeRow,((southBorderEdgeRow + numBlendRows) - 1)) |
|
126 |
srows <- seq((begBlendRow),northBorderEdgeRow) |
|
127 |
# |
|
128 |
for (curMosCol in 1 : ncol(mosaicLayers[[1]])) |
|
129 |
{ |
|
130 |
message(sprintf("transforming cur col: %d",curMosCol)) |
|
131 |
#browser() |
|
132 |
# deltaInc <- brdrRowEdgeDelta[curMosCol] / numBlendRows |
|
133 |
colVecCells <- cellFromRowCol(outMosaic,srows,curMosCol) |
|
134 |
colVecValues <- getValuesBlock(outMosaic,row=begBlendRow,nrows=numBlendRows,col=curMosCol,ncols=1) |
|
135 |
compareVec <- getValuesBlock(outMosaic,row=begBlendRow,nrows=numBlendRows+2,col=curMosCol,ncols=1) |
|
136 |
curRowBoundaryOffset <- brdrRowEdgeDelta[curMosCol] |
|
137 |
|
|
138 |
# note: we need to deal with NA values, which are possible. |
|
139 |
|
|
140 |
# sumDeltaInc <- 0 |
|
141 |
# for (iCtr in numBlendRows : 1) # this moves from 'south to north', decay increases with distance. |
|
142 |
for (iCtr in 1 : numBlendRows) # this moves from 'south to north', decay increases with distance. |
|
143 |
# for (iCtr in length(colVecValues) : 1) # this moves from 'south to north', decay increases with distance. |
|
144 |
{ |
|
145 |
|
|
146 |
# The idea: the closer to the border, the larger an increment we assign. |
|
147 |
# in any case, increment the offset so that it is correct for any iupcoming non-NA column value |
|
148 |
|
|
149 |
if (!is.na(colVecValues[1])) |
|
150 |
{ |
|
151 |
#message(sprintf("cur col: %d Found a NON-NA vector",curMosCol)) |
|
152 |
#browser() |
|
153 |
|
|
154 |
# exponential decay diminishes impact of the 'delta' edge adjustment with distance from the boundary. |
|
155 |
|
|
156 |
dK <- exp(-(iCtr * dKc)) |
|
157 |
colToMod <- (numBlendRows-iCtr)+1 |
|
158 |
# qq <- as.integer(round(colVecValues[colToMod] + (curRowBoundaryOffset * dK))) |
|
159 |
colVecValues[colToMod] <- as.integer(round(colVecValues[colToMod] + (curRowBoundaryOffset * dK))) |
|
160 |
# colVecValues[iCtr] <- as.integer(round(colVecValues[iCtr] + (curRowBoundaryOffset * dK))) |
|
161 |
} |
|
162 |
} |
|
163 |
|
|
164 |
# Insert this vector back into the mosaic: this technique adopted from raster PDF doc 'replacement' help. |
|
165 |
# Looks like: I have to specify the row index (vector) to insert the values into the mosaic. |
|
166 |
message("write columns to out mosaic") |
|
167 |
#rowser() |
|
168 |
outMosaic[colVecCells] <- colVecValues |
|
169 |
|
|
170 |
} |
|
171 |
|
|
172 |
# write the modified outMosaic values to the image file that we created. |
|
173 |
|
|
174 |
message("Done with raster blending : hit key to update raster disk file..") |
|
175 |
browser() |
|
176 |
writeRaster(outMosaic, sFixedRasterFile, datatype="INT2S", format="GTiff",overwrite=TRUE) |
|
177 |
} |
terrain/rscripts/DEMBoundarySolutionsBlock.R | ||
---|---|---|
1 |
##################################################################################### |
|
2 |
# DEMBoundarySolutionsBlock - Block version, uses a BLOCK write to create output mosaic |
|
3 |
# |
|
4 |
# Collection of functions that attempt to mitigate ASTER / SRTM the boundary edge problem |
|
5 |
# |
|
6 |
# |
|
7 |
# |
|
8 |
# Inputs: |
|
9 |
# 1) Blended Aster/SRTM DEM mosaic image. |
|
10 |
# 2) 'Aster-Only' subimage corresponding to the NORTHernmost part (adjacent to the 60 degree Lat |
|
11 |
# boundary) of the SRTM component of the mosaic. |
|
12 |
# 3) 'Aster-Only' subimage corresponding to the SOUTHernmost part (adjacent to the 60 degree Lat |
|
13 |
# boundary) of the ASTER component of the mosaic. |
|
14 |
# 4) Other parameters, as they are needed |
|
15 |
# |
|
16 |
# To run: |
|
17 |
# |
|
18 |
# 1) start R |
|
19 |
# 2) > source("DEMBoundarySolutions.r") |
|
20 |
# 3) > BlendAsterDEMPixelsBlock() |
|
21 |
# |
|
22 |
# Author: Rick Reeves, NCEAS |
|
23 |
# May 31, 2011 |
|
24 |
|
|
25 |
############################################################################################## |
|
26 |
BlendAsterDEMPixelsBlock <- function() |
|
27 |
{ |
|
28 |
require(raster) |
|
29 |
require(rgdal) |
|
30 |
|
|
31 |
# Read the mosaic image and component sub-images: |
|
32 |
# - Aster/SRTM mosaic image (with boundary edge to be fixed) |
|
33 |
# - 'Aster-only' subimage adjacent to Southern edge of 60 degree bounls -s dary, |
|
34 |
# sampled into a grid with same extent and spatial resolution as image mosaic |
|
35 |
# - 'Aster-only' subimage adjacent to Northern edge of 60 degree boundary, |
|
36 |
# sampled into a grid with same extent and spatial resolution as image mosaic |
|
37 |
|
|
38 |
# inMosaic <- raster("t:/rcr/BoundaryFixTest/AsterSrtmBoth3ArcSecSub.tif") |
|
39 |
# inAsterNorth <- raster("t:/rcr/BoundaryFixTest/AsterBdyTest3ArcSecFullGridAbove60.tif") |
|
40 |
# inAsterSouth <- raster("t:/rcr/BoundaryFixTest/AsterBdyTest3ArcSecFullGridBelow60.tif") |
|
41 |
inMosaic <- raster("./AsterSrtmBoth3ArcSecSub.tif") |
|
42 |
|
|
43 |
# Use these objects to get the extents of the subsets within the mosaic |
|
44 |
|
|
45 |
inAsterNorth <- raster("./AsterBdyTestAbove60Sub.tif") |
|
46 |
inAsterSouth <- raster("./AsterBdyTestBelow60Sub.tif") |
|
47 |
|
|
48 |
# Better, read them into a rasterStack |
|
49 |
|
|
50 |
# mosaicLayers <- stack("./AsterSrtmBoth3ArcSecSub.tif", |
|
51 |
# "./AsterBdyTest3ArcSecFullGridAbove60.tif", |
|
52 |
# "./AsterBdyTest3ArcSecFullGridBelow60.tif") # fix by exporting from ArcGIS |
|
53 |
|
|
54 |
mosaicLayers <- stack("./AsterSRTMBothTestSub.tif", |
|
55 |
"./AsterBdyTestFGAbove60Sub.tif", |
|
56 |
"./AsterBdyTestFGBelow60Sub.tif") |
|
57 |
# |
|
58 |
# Create copy of input raster that we will use to create a 'fixed boundary' iamge |
|
59 |
# Even SIMPLER, according to raster documentation |
|
60 |
# |
|
61 |
outMosaic <- raster(mosaicLayers[[1]]) |
|
62 |
|
|
63 |
sFixedRasterFile <- "TestOutputRasterBdyFix.tif" |
|
64 |
|
|
65 |
# First, get the extent of the 'below 60' sub image in the (big) input raster |
|
66 |
|
|
67 |
northAsterEx <- extent(inAsterNorth) |
|
68 |
southAsterEx <- extent(inAsterSouth) |
|
69 |
|
|
70 |
# Get the values from the mosaic for this extent |
|
71 |
|
|
72 |
southCellsOfInterest <- cellsFromExtent(mosaicLayers[[1]],southAsterEx) |
|
73 |
northCellsOfInterest <- cellsFromExtent(mosaicLayers[[1]],northAsterEx) |
|
74 |
|
|
75 |
# Within the large input raster, we need the index of the first row of the 'Below 60 Aster' subimage. |
|
76 |
# Our plan: to replace this portion of the input mosaic with a linear combination of the original |
|
77 |
# input mosaic COPY (outMosaic) and the 'below 60' raster. |
|
78 |
|
|
79 |
firstNorthSubImgRow <- rowFromCell(mosaicLayers[[1]],northCellsOfInterest[1]) |
|
80 |
lastNorthSubImgRow <- rowFromCell(mosaicLayers[[1]],northCellsOfInterest[(length(northCellsOfInterest) - 1)]) |
|
81 |
northNrowsToProcess <- nrow(inAsterNorth) |
|
82 |
|
|
83 |
firstSouthSubImgRow <- rowFromCell(mosaicLayers[[1]],southCellsOfInterest[1]) |
|
84 |
lastSouthSubImgRow <- rowFromCell(mosaicLayers[[1]],southCellsOfInterest[(length(southCellsOfInterest) - 1)]) |
|
85 |
southNrowsToProcess <- nrow(inAsterSouth) |
|
86 |
|
|
87 |
# create the output raster by copying the input file with 'block copy' |
|
88 |
|
|
89 |
message("Create output (fixed) mosaic") |
|
90 |
#browser() |
|
91 |
bs <- blockSize(mosaicLayers[[1]]) |
|
92 |
outMosaic <- writeStart(outMosaic,sFixedRasterFile, datatype="INT2S", format="GTiff",overwrite=TRUE) |
|
93 |
for (iCtr in 1 : bs$n) |
|
94 |
{ |
|
95 |
mosaicVals <- getValues(mosaicLayers[[1]],row=bs$row[iCtr],nrows=bs$nrows[iCtr]) |
|
96 |
writeValues(outMosaic,mosaicVals,bs$row[iCtr]) |
|
97 |
message(sprintf(".....processed input mosaic block %d",iCtr)) |
|
98 |
} |
|
99 |
outMosaic <- writeStop(outMosaic) |
|
100 |
message("Input mosaic copied to output raster: now, process boundary") |
|
101 |
#browser() |
|
102 |
|
|
103 |
# now, we SHOULD be able to modify outMosaic with new 'column values'. |
|
104 |
|
|
105 |
# note: last north image and first south image rows are the same. |
|
106 |
|
|
107 |
northBorderEdgeRow <- lastNorthSubImgRow |
|
108 |
southBorderEdgeRow <- firstSouthSubImgRow + 1 |
|
109 |
|
|
110 |
# The border 'edge' row is one row below the top of the south sub image |
|
111 |
|
|
112 |
southBrdrRowVals <- getValues(outMosaic,southBorderEdgeRow,1) |
|
113 |
northBrdrRowVals <- getValues(outMosaic,northBorderEdgeRow,1) |
|
114 |
|
|
115 |
brdrRowEdgeDelta <- southBrdrRowVals - northBrdrRowVals |
|
116 |
|
|
117 |
# Process the mosaic 'column-by-column' |
|
118 |
# For first effort, apply straightforward linear ramp function to the northernmost SRTM image rows. |
|
119 |
# In next iteration, we will modify the LAST 'numBlendRows' rows NORTH of the boundary with an 'extinction' function. |
|
120 |
# |
|
121 |
numBlendRows <- 100 |
|
122 |
srows <- seq(southBorderEdgeRow,((southBorderEdgeRow + numBlendRows) - 1)) |
|
123 |
# |
|
124 |
for (curMosCol in 1 : ncol(mosaicLayers[[1]])) |
|
125 |
{ |
|
126 |
message(sprintf("transforming cur col: %d",curMosCol)) |
|
127 |
#browser() |
|
128 |
deltaInc <- brdrRowEdgeDelta[curMosCol] / numBlendRows |
|
129 |
colVecCells <- cellFromRowCol(outMosaic,srows,curMosCol) |
|
130 |
colVecValues <- getValuesBlock(outMosaic,row=southBorderEdgeRow,nrows=numBlendRows,col=curMosCol,ncols=1) |
|
131 |
|
|
132 |
# note: we need to deal with NA values, which are possible. |
|
133 |
|
|
134 |
sumDeltaInc <- 0 |
|
135 |
for (iCtr in length(colVecValues) : 1) |
|
136 |
{ |
|
137 |
|
|
138 |
# The idea: the closer to the border, the larger an increment we assign. |
|
139 |
# in any case, increment the offset so that it is correct for any iupcoming non-NA column value |
|
140 |
|
|
141 |
sumDeltaInc <- sumDeltaInc + deltaInc |
|
142 |
|
|
143 |
if (!is.na(colVecValues[1])) |
|
144 |
{ |
|
145 |
#message(sprintf("cur col: %d Found a NON-NA vector",curMosCol)) |
|
146 |
#browser() |
|
147 |
colVecValues[iCtr] <- as.integer(round(colVecValues[iCtr] - sumDeltaInc)) |
|
148 |
} |
|
149 |
} |
|
150 |
|
|
151 |
# Insert this vector back into the mosaic: this technique adopted from raster PDF doc 'replacement' help. |
|
152 |
# Looks like: I have to specify the row index (vector) to insert the values into the mosaic. |
|
153 |
#message("write columns to out mosaic") |
|
154 |
#browser() |
|
155 |
outMosaic[colVecCells] <- colVecValues |
|
156 |
# outMosaic[srows,curMosCol] <- colVecValues # this did not seem to work - june 1 |
|
157 |
|
|
158 |
} |
|
159 |
#message(sprintf("cur col: %d about to write to outMosaic",curMosCol)) |
|
160 |
#browser() |
|
161 |
|
|
162 |
# write the modified outMosaic values to the image file that we created. |
|
163 |
|
|
164 |
message("Done with raster blending : hit key to update raster disk file..") |
|
165 |
browser() |
|
166 |
writeRaster(outMosaic, sFixedRasterFile, datatype="INT2S", format="GTiff",overwrite=TRUE) |
|
167 |
} |
terrain/rscripts/FixDEMMosaicBlendedRows.R | ||
---|---|---|
1 |
##################################################################################### |
|
2 |
# FixDEMMosaicBlendedRows: Implements Image Blending treatment to DEM Mosaic image |
|
3 |
# Collection of functions that attempt to mitigate ASTER / SRTM the boundary edge artifact |
|
4 |
# |
|
5 |
# Inputs: |
|
6 |
# 1) DEM Mosaic image containing 'boundary edge' artifact |
|
7 |
# 2) 'Aster-Only' subimage corresponding to the NORTHernmost part (adjacent to the 60 degree Lat |
|
8 |
# boundary) of the SRTM component of the mosaic. |
|
9 |
# 3) 'Aster-Only' subimage corresponding to the SOUTHernmost part (adjacent to the 60 degree Lat |
|
10 |
# boundary) of the ASTER component of the mosaic. |
|
11 |
# 4) numBlendRows: number of number of rows south of 60 degrees N Lat to modify ('blend') by |
|
12 |
# generating (lnear) combination of SRTM and ASTER image pixels. |
|
13 |
# |
|
14 |
# Output: |
|
15 |
# 1) A copy of the input DEM mosaic, with 'blended image' boundary edge treatment. |
|
16 |
# |
|
17 |
# To run: |
|
18 |
# |
|
19 |
# 1) start R |
|
20 |
# 2) > source("FixDEMMosaicBlendedRows.r") |
|
21 |
# 3) > FixDEMMosaicBlendedRows() |
|
22 |
# |
|
23 |
# Note: the input images used by this program located on /jupiter: /data/project/organisms/rcr/BoundaryFixTest |
|
24 |
# |
|
25 |
# Author: Rick Reeves, NCEAS |
|
26 |
# June 12, 2011 |
|
27 |
# |
|
28 |
############################################################################################## |
|
29 |
FixDEMMosaicBlendedRows <- function() |
|
30 |
{ |
|
31 |
require(raster) |
|
32 |
require(rgdal) |
|
33 |
|
|
34 |
# Key parameter: number of rows south of 60 degrees N Lat to modify ('blend') by |
|
35 |
# generating (lnear) combination of SRTM and ASTER image pixels. |
|
36 |
|
|
37 |
numBlendRows <- 100 |
|
38 |
|
|
39 |
# Read the mosaic image and component sub-images: |
|
40 |
# - Aster/SRTM mosaic image (with boundary edge to be fixed) |
|
41 |
# - 'Aster-only' subimage adjacent to Southern edge of 60 degree bounls -s dary, |
|
42 |
# sampled into a grid with same extent and spatial resolution as image mosaic |
|
43 |
# - 'Aster-only' subimage adjacent to Northern edge of 60 degree boundary, |
|
44 |
# sampled into a grid with same extent and spatial resolution as image mosaic |
|
45 |
# inAsterNorthFG <- raster("./aster60DegNorthRasterFG.tif") |
|
46 |
# inAsterSouthFG <- raster("./aster59DegSouthRasterFG.tif") |
|
47 |
# inBdyAsterBoth <- raster("./boundaryTestCase115DegBothAsterMos.img") |
|
48 |
|
|
49 |
inMosaic <- raster("./AsterSrtm3ArcSecTestImg.tif") |
|
50 |
inAsterSouth <- raster("./boundaryTest115_59DegreeAster.img") |
|
51 |
inAsterSouthFG <- raster("./aster59DegSouthRasterFG.tif") |
|
52 |
inAsterNorth <- raster("./boundaryTest115_60DegreeAster.img") |
|
53 |
|
|
54 |
# First, get the extent of the 'below 60' sub image in the (big) input raster |
|
55 |
|
|
56 |
northAsterEx <- extent(inAsterNorth) |
|
57 |
southAsterEx <- extent(inAsterSouth) |
|
58 |
|
|
59 |
# Create copy of input raster that we will use to create a 'fixed boundary' iamge |
|
60 |
# Even SIMPLER, according to raster documentation |
|
61 |
|
|
62 |
outMosaic <- raster(inMosaic) |
|
63 |
|
|
64 |
sFixedRasterFile <- "TestOutRasterBdyBlendFixAft2.tif" |
|
65 |
|
|
66 |
# create the output raster by copying the input file with 'block copy' |
|
67 |
|
|
68 |
message("Copy input mosaic: Create output (repaired) mosaic") |
|
69 |
#browser() |
|
70 |
bs <- blockSize(inMosaic) |
|
71 |
outMosaic <- writeStart(outMosaic,sFixedRasterFile, datatype="INT2S", format="GTiff",overwrite=TRUE) |
|
72 |
for (iCtr in 1 : bs$n) |
|
73 |
{ |
|
74 |
mosaicVals <- getValues(inMosaic,row=bs$row[iCtr],nrows=bs$nrows[iCtr]) |
|
75 |
writeValues(outMosaic,mosaicVals,bs$row[iCtr]) |
|
76 |
message(sprintf(".....processed input mosaic block %d",iCtr)) |
|
77 |
} |
|
78 |
outMosaic <- writeStop(outMosaic) |
|
79 |
# |
|
80 |
message("Input mosaic copied to output raster: now, process boundary") |
|
81 |
browser() |
|
82 |
|
|
83 |
# now, we SHOULD be able to modify outMosaic with new 'column values'. |
|
84 |
|
|
85 |
southCellsOfInterest <- cellsFromExtent(outMosaic,southAsterEx) |
|
86 |
northCellsOfInterest <- cellsFromExtent(outMosaic,northAsterEx) |
|
87 |
|
|
88 |
firstNorthSubImgRow <- rowFromCell(outMosaic,northCellsOfInterest[1]) |
|
89 |
lastNorthSubImgRow <- rowFromCell(outMosaic,northCellsOfInterest[(length(northCellsOfInterest) - 1)]) |
|
90 |
|
|
91 |
firstSouthSubImgRow <- rowFromCell(outMosaic,southCellsOfInterest[1]) |
|
92 |
lastSouthSubImgRow <- rowFromCell(outMosaic,southCellsOfInterest[(length(southCellsOfInterest) - 1)]) |
|
93 |
|
|
94 |
# note: last north image and first south image rows are the same. |
|
95 |
|
|
96 |
northBorderEdgeRow <- lastNorthSubImgRow |
|
97 |
southBorderEdgeRow <- firstSouthSubImgRow + 1 |
|
98 |
|
|
99 |
# The border 'edge' row is one row below the top of the south sub image |
|
100 |
|
|
101 |
northBrdrRowVals <- getValues(outMosaic,northBorderEdgeRow,1) |
|
102 |
southBrdrRowVals <- getValues(outMosaic,southBorderEdgeRow,1) |
|
103 |
|
|
104 |
# Process the mosaic rows: |
|
105 |
# Blend the first 'numBlendRows' south of the 60 degree line (first rows of the SRTM component) |
|
106 |
# with the underlying and corresponding ASTER image rows. |
|
107 |
# For first attempt, use a linear combination; for second attempt, use an exponential function. |
|
108 |
# |
|
109 |
nImageCols <- ncol(inMosaic) |
|
110 |
sRows <- seq(southBorderEdgeRow,((southBorderEdgeRow + numBlendRows) - 1)) |
|
111 |
# |
|
112 |
rowVecValuesBlend <- vector(mode="integer",length=nImageCols) |
|
113 |
iRowCtr <- 1 |
|
114 |
for (curMosRow in sRows) |
|
115 |
{ |
|
116 |
message(sprintf("transforming cur row: %d",curMosRow)) |
|
117 |
#:browser() |
|
118 |
|
|
119 |
# even simpler here, as we implement a 'linear distance decay' function, |
|
120 |
# and let each new column be a linear combination of the Aster and CGIAR image layers |
|
121 |
|
|
122 |
deltaInc <- iRowCtr / as.numeric(numBlendRows) |
|
123 |
colVecCells <- cellFromRowCol(outMosaic,curMosRow,1:nImageCols) |
|
124 |
|
|
125 |
# get the current row from the mosaic(SRTM data) and raster images |
|
126 |
# We get the ASTER values from a version of the 'South' ASTER image |
|
127 |
# with same extent as the image mosaic. |
|
128 |
|
|
129 |
rowVecValuesMosaic <- getValuesBlock(outMosaic,row=curMosRow,nrows=1,col=1,ncols=nImageCols) |
|
130 |
rowVecValuesAster <- getValuesBlock(inAsterSouthFG,row=curMosRow,nrows=1,col=1,ncols=nImageCols) |
|
131 |
rowVecValuesBlend <- (rowVecValuesMosaic * deltaInc) + (rowVecValuesAster * (1.0 - deltaInc)) |
|
132 |
|
|
133 |
# create the merged row as a linear combination of the Mosaic and Aster image. |
|
134 |
# note: we need to deal with NA values, which are possible. |
|
135 |
|
|
136 |
# write the blended row to the output mosaic |
|
137 |
|
|
138 |
outMosaic[colVecCells] <- as.integer(round(rowVecValuesBlend)) |
|
139 |
iRowCtr <- iRowCtr + 1 |
|
140 |
} |
|
141 |
#message(sprintf("cur col: %d about to write to outMosaic",curMosCol)) |
|
142 |
#browser() |
|
143 |
|
|
144 |
# write the modified outMosaic values to the image file that we created. |
|
145 |
|
|
146 |
message("Done with raster blending : hit key to update raster disk file..") |
|
147 |
browser() |
|
148 |
writeRaster(outMosaic, sFixedRasterFile, datatype="INT2S", format="GTiff",overwrite=TRUE) |
|
149 |
#browser() |
|
150 |
} |
terrain/rscripts/FixDEMMosaicBlendedRowsExpDecay.R | ||
---|---|---|
1 |
##################################################################################### |
|
2 |
# FixDEMMosaicBlendedRowsExpDecay: Implements Image Blending treatment to DEM Mosaic image |
|
3 |
# Collection of functions that attempt to mitigate ASTER / SRTM the boundary edge artifact |
|
4 |
# This version implements the Exponential Decay function to control image blending rate. |
|
5 |
# Inputs: |
|
6 |
# 1) DEM Mosaic image containing 'boundary edge' artifact |
|
7 |
# 2) 'Aster-Only' subimage corresponding to the NORTHernmost part (adjacent to the 60 degree Lat |
|
8 |
# boundary) of the SRTM component of the mosaic. |
|
9 |
# 3) 'Aster-Only' subimage corresponding to the SOUTHernmost part (adjacent to the 60 degree Lat |
|
10 |
# boundary) of the ASTER component of the mosaic. |
|
11 |
# 4) numBlendRows: number of number of rows south of 60 degrees N Lat to modify ('blend') by |
|
12 |
# generating (lnear) combination of SRTM and ASTER image pixels. |
|
13 |
# 5) dKc: Empirically-determined exponential decay constant. Rule of thumb: set this such |
|
14 |
# that exponential decay function approaches zero as row 'numBlendRows' is treated. |
|
15 |
# |
|
16 |
# Output: |
|
17 |
# 1) A copy of the input DEM mosaic, with 'blended image' boundary edge treatment. |
|
18 |
# |
|
19 |
# To run: |
|
20 |
# |
|
21 |
# 1) start R |
|
22 |
# 2) > source("FixDEMMosaicBlendedRows.r") |
|
23 |
# 3) > FixDEMMosaicBlendedRows() |
|
24 |
# |
|
25 |
# Note: the input images used by this program located on /jupiter: /data/project/organisms/rcr/BoundaryFixTest |
|
26 |
# |
|
27 |
# Author: Rick Reeves, NCEAS |
|
28 |
# June 13, 2011 |
|
29 |
# |
|
30 |
############################################################################################## |
|
31 |
FixDEMMosaicBlendedRowsExpDecay <- function() |
|
32 |
{ |
|
33 |
require(raster) |
|
34 |
require(rgdal) |
|
35 |
|
|
36 |
# Key parameter: number of rows south of 60 degrees N Lat to modify ('blend') by |
|
37 |
# generating (lnear) combination of SRTM and ASTER image pixels. |
|
38 |
|
|
39 |
numBlendRows <- 100 |
|
40 |
dKc <- .045 # empirically determined exponential decay constant. Select it |
|
41 |
# so that exp - 1 decay goes to zero in the desired number of image rows. |
|
42 |
|
|
43 |
# Read the mosaic image and component sub-images: |
|
44 |
# - Aster/SRTM mosaic image (with boundary edge to be fixed) |
|
45 |
# - 'Aster-only' subimage adjacent to Southern edge of 60 degree bounls -s dary, |
|
46 |
# sampled into a grid with same extent and spatial resolution as image mosaic |
|
47 |
# - 'Aster-only' subimage adjacent to Northern edge of 60 degree boundary, |
|
48 |
# sampled into a grid with same extent and spatial resolution as image mosaic |
|
49 |
# inAsterNorthFG <- raster("./aster60DegNorthRasterFG.tif") |
|
50 |
# inAsterSouthFG <- raster("./aster59DegSouthRasterFG.tif") |
|
51 |
# inBdyAsterBoth <- raster("./boundaryTestCase115DegBothAsterMos.img") |
|
52 |
|
|
53 |
inMosaic <- raster("./AsterSrtm3ArcSecTestImg.tif") |
|
54 |
inAsterSouth <- raster("./boundaryTest115_59DegreeAster.img") |
|
55 |
inAsterSouthFG <- raster("./aster59DegSouthRasterFG.tif") |
|
56 |
inAsterNorth <- raster("./boundaryTest115_60DegreeAster.img") |
|
57 |
|
|
58 |
# First, get the extent of the 'below 60' sub image in the (big) input raster |
|
59 |
|
|
60 |
northAsterEx <- extent(inAsterNorth) |
|
61 |
southAsterEx <- extent(inAsterSouth) |
|
62 |
|
|
63 |
# Create copy of input raster that we will use to create a 'fixed boundary' iamge |
|
64 |
# Even SIMPLER, according to raster documentation |
|
65 |
|
|
66 |
outMosaic <- raster(inMosaic) |
|
67 |
|
|
68 |
sFixedRasterFile <- "TestOutRasterBdyBlendFixExpDec.tif" |
|
69 |
|
|
70 |
# create the output raster by copying the input file with 'block copy' |
|
71 |
|
|
72 |
message("Copy input mosaic: Create output (repaired) mosaic") |
|
73 |
#browser() |
|
74 |
bs <- blockSize(inMosaic) |
|
75 |
outMosaic <- writeStart(outMosaic,sFixedRasterFile, datatype="INT2S", format="GTiff",overwrite=TRUE) |
|
76 |
for (iCtr in 1 : bs$n) |
|
77 |
{ |
|
78 |
mosaicVals <- getValues(inMosaic,row=bs$row[iCtr],nrows=bs$nrows[iCtr]) |
|
79 |
writeValues(outMosaic,mosaicVals,bs$row[iCtr]) |
|
80 |
message(sprintf(".....processed input mosaic block %d",iCtr)) |
|
81 |
} |
|
82 |
outMosaic <- writeStop(outMosaic) |
|
83 |
# |
|
84 |
message("Input mosaic copied to output raster: now, process boundary") |
|
85 |
browser() |
|
86 |
|
|
87 |
# now, we SHOULD be able to modify outMosaic with new 'column values'. |
|
88 |
|
|
89 |
southCellsOfInterest <- cellsFromExtent(outMosaic,southAsterEx) |
|
90 |
northCellsOfInterest <- cellsFromExtent(outMosaic,northAsterEx) |
|
91 |
|
|
92 |
firstNorthSubImgRow <- rowFromCell(outMosaic,northCellsOfInterest[1]) |
|
93 |
lastNorthSubImgRow <- rowFromCell(outMosaic,northCellsOfInterest[(length(northCellsOfInterest) - 1)]) |
|
94 |
|
|
95 |
firstSouthSubImgRow <- rowFromCell(outMosaic,southCellsOfInterest[1]) |
|
96 |
lastSouthSubImgRow <- rowFromCell(outMosaic,southCellsOfInterest[(length(southCellsOfInterest) - 1)]) |
|
97 |
|
|
98 |
# note: last north image and first south image rows are the same. |
|
99 |
|
|
100 |
northBorderEdgeRow <- lastNorthSubImgRow |
|
101 |
southBorderEdgeRow <- firstSouthSubImgRow + 1 |
|
102 |
|
|
103 |
# The border 'edge' row is one row below the top of the south sub image |
|
104 |
|
|
105 |
northBrdrRowVals <- getValues(outMosaic,northBorderEdgeRow,1) |
|
106 |
southBrdrRowVals <- getValues(outMosaic,southBorderEdgeRow,1) |
|
107 |
|
|
108 |
# Process the mosaic rows: |
|
109 |
# Blend the first 'numBlendRows' south of the 60 degree line (first rows of the SRTM component) |
|
110 |
# with the underlying and corresponding ASTER image rows. |
|
111 |
# For first attempt, use a linear combination; for second attempt, use an exponential function. |
|
112 |
# |
|
113 |
nImageCols <- ncol(inMosaic) |
|
114 |
sRows <- seq(southBorderEdgeRow,((southBorderEdgeRow + numBlendRows) - 1)) |
|
115 |
# |
|
116 |
rowVecValuesBlend <- vector(mode="integer",length=nImageCols) |
|
117 |
iRowCtr <- 1 |
|
118 |
for (curMosRow in sRows) |
|
119 |
{ |
|
120 |
message(sprintf("transforming cur row: %d",curMosRow)) |
|
121 |
# exponential decay diminishes impact of the 'delta' edge adjustment with distance from the boundary. |
|
122 |
|
|
123 |
dK <- exp(-(iRowCtr * dKc)) |
|
124 |
# colToMod <- (numBlendRows-iCtr)+1 |
|
125 |
# qq <- as.integer(round(colVecValues[colToMod] + (curRowBoundaryOffset * dK))) |
|
126 |
# colVecValues[colToMod] <- as.integer(round(colVecValues[colToMod] + (curRowBoundaryOffset * dK))) |
|
127 |
# colVecValues[iCtr] <- as.integer(round(colVecValues[iCtr] + (curRowBoundaryOffset * dK))) |
Also available in: Unified diff
removed obsolete/preliminary DEM 60N assessment scripts