Revision a156c854
Added by Benoit Parmentier about 9 years ago
climate/research/oregon/interpolation/master_script_stage_6.R | ||
---|---|---|
11 | 11 |
#STAGE 6: Assessement of predictions by tiles and regions with mosaicing of predictions and accuracy |
12 | 12 |
#AUTHOR: Benoit Parmentier |
13 | 13 |
#CREATED ON: 12/29/2015 |
14 |
#MODIFIED ON: 12/31/2015
|
|
14 |
#MODIFIED ON: 01/03/2015
|
|
15 | 15 |
#PROJECT: NCEAS INPLANT: Environment and Organisms |
16 | 16 |
|
17 | 17 |
## TODO: |
... | ... | |
50 | 50 |
#CALLED FROM MASTER SCRIPT: |
51 | 51 |
|
52 | 52 |
script_path <- "/nobackupp8/bparmen1/env_layers_scripts" #path to script |
53 |
function_assessment_part1_script <- "global_run_scalingup_assessment_part1_functions_02112015.R" #PARAM12 |
|
54 |
function_assessment_part1a <-"global_run_scalingup_assessment_part1a_12312015.R" |
|
55 |
source(file.path(script_path,function_assessment_part1_script)) #source all functions used in this script |
|
53 |
function_assessment_part1_functions <- "global_run_scalingup_assessment_part1_functions_02112015.R" #PARAM12 |
|
54 |
function_assessment_part1a <-"global_run_scalingup_assessment_part1a_01042016.R" |
|
55 |
function_assessment_part2 <- "global_run_scalingup_assessment_part2_01042016.R" |
|
56 |
function_assessment_part2_functions <- "global_run_scalingup_assessment_part2_functions_01032016.R" |
|
57 |
source(file.path(script_path,function_assessment_part1_functions)) #source all functions used in this script |
|
56 | 58 |
source(file.path(script_path,function_assessment_part1a)) #source all functions used in this script |
59 |
source(file.path(script_path,function_assessment_part2)) #source all functions used in this script |
|
60 |
source(file.path(script_path,function_assessment_part2_functions)) #source all functions used in this script |
|
57 | 61 |
|
58 | 62 |
### Parameters and arguments ### |
59 | 63 |
|
60 | 64 |
var<-"TMAX" # variable being interpolated |
65 |
if (var == "TMAX") { |
|
66 |
y_var_name <- "dailyTmax" |
|
67 |
y_var_month <- "TMax" |
|
68 |
} |
|
69 |
if (var == "TMIN") { |
|
70 |
y_var_name <- "dailyTmin" |
|
71 |
y_var_month <- "TMin" |
|
72 |
} |
|
61 | 73 |
|
62 | 74 |
#interpolation_method<-c("gam_fusion") #other otpions to be added later |
63 | 75 |
interpolation_method<-c("gam_CAI") |
... | ... | |
74 | 86 |
#/nobackupp6/aguzman4/climateLayers/out_15x45/1982 |
75 | 87 |
|
76 | 88 |
#region_names <- c("reg23","reg4") #selected region names, #PARAM2 |
77 |
region_name <- c("reg4") #run assessment by region |
|
89 |
region_name <- c("reg4") #run assessment by region, this is a unique region only
|
|
78 | 90 |
#region_names <- c("reg1","reg2","reg3","reg4","reg5","reg6") #selected region names, #PARAM2 |
79 | 91 |
interpolation_method <- c("gam_CAI") #PARAM4 |
80 | 92 |
out_prefix <- "run_global_analyses_pred_12282015" #PARAM5 |
... | ... | |
86 | 98 |
#CRS_interp <-"+proj=lcc +lat_1=43 +lat_2=45.5 +lat_0=41.75 +lon_0=-120.5 +x_0=400000 +y_0=0 +ellps=GRS80 +units=m +no_defs"; |
87 | 99 |
CRS_locs_WGS84<-CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #Station coords WGS84 |
88 | 100 |
|
89 |
list_year_predicted <- 1984:2004 |
|
101 |
#list_year_predicted <- 1984:2004 |
|
102 |
list_year_predicted <- c("2014") |
|
90 | 103 |
#year_predicted <- list_year_predicted[1] |
91 | 104 |
|
92 | 105 |
file_format <- ".tif" #format for mosaiced files #PARAM10 |
93 | 106 |
NA_flag_val <- -9999 #No data value, #PARAM11 |
94 | 107 |
num_cores <- 6 #number of cores used #PARAM13 |
95 |
|
|
96 |
list_param_run_assessment_prediction <- list(in_dir1,region_name,interpolation_method,out_prefix, |
|
97 |
out_dir,create_out_dir_param,CRS_locs_WGS84, |
|
98 |
list_year_predicted,file_format,NA_flag_val,num_cores) |
|
99 |
list_names <- c("in_dir1","region_name","interpolation_method","out_prefix", |
|
100 |
"out_dir","create_out_dir_param","CRS_locs_WGS84", |
|
101 |
"list_year_predicted","file_format","NA_flag_val","num_cores") |
|
108 |
plotting_figures <- TRUE #running part2 of assessment to generate figures... |
|
109 |
|
|
110 |
##Additional parameters used in part 2, some these may be removed as code is simplified |
|
111 |
mosaic_plot <- FALSE #PARAM14 |
|
112 |
day_to_mosaic <- c("19920102","19920103","19920103") #PARAM15 |
|
113 |
multiple_region <- TRUE #PARAM16 |
|
114 |
countries_shp <- "/nobackupp8/bparmen1/NEX_data/countries.shp" #PARAM17 |
|
115 |
#countries_shp <-"/data/project/layers/commons/NEX_data/countries.shp" #Atlas |
|
116 |
plot_region <- TRUE #PARAM18 |
|
117 |
threshold_missing_day <- c(367,365,300,200)#PARAM19 |
|
118 |
|
|
119 |
list_param_run_assessment_prediction <- list(in_dir1,region_name,y_var_name,interpolation_method,out_prefix, |
|
120 |
out_dir,create_out_dir_param,CRS_locs_WGS84,list_year_predicted, |
|
121 |
file_format,NA_flag_val,num_cores,plotting_figures, |
|
122 |
mosaic_plot,day_to_mosaic,multiple_region,countries_shp,plot_region) |
|
123 |
list_names <- c("in_dir1","region_name","y_var_name","interpolation_method","out_prefix", |
|
124 |
"out_dir","create_out_dir_param","CRS_locs_WGS84","list_year_predicted", |
|
125 |
"file_format","NA_flag_val","num_cores","plotting_figures", |
|
126 |
"mosaic_plot","day_to_mosaic","multiple_region","countries_shp","plot_region") |
|
127 |
|
|
102 | 128 |
|
103 | 129 |
names(list_param_run_assessment_prediction)<-list_names |
104 | 130 |
|
... | ... | |
114 | 140 |
assessment_prediction_obj <- run_assessment_prediction_fun(i,list_param_run_assessment_prediction) |
115 | 141 |
} |
116 | 142 |
|
143 |
## Add stage 7 (mosaicing) here?? |
|
144 |
#i <- 1 #this select the first year of list_year_predicted |
|
145 |
#if (stages_to_run[7]==7){ |
|
146 |
# assessment_prediction_obj <- run_assessment_prediction_fun(i,list_param_run_assessment_prediction) |
|
147 |
#} |
|
148 |
|
|
117 | 149 |
############### END OF SCRIPT ################### |
118 | 150 |
##################################################### |
119 | 151 |
|
Also available in: Unified diff
adding sourcing of relevant script for stage 6 assessment and debugging