Project

General

Profile

« Previous | Next » 

Revision a408f6cb

Added by Benoit Parmentier over 10 years ago

assessment NEX run 3: modifications to analyze results with figures

View differences:

climate/research/oregon/interpolation/global_run_scalingup_assessment_part2.R
5 5
#Analyses, figures, tables and data are also produced in the script.
6 6
#AUTHOR: Benoit Parmentier 
7 7
#CREATED ON: 03/23/2014  
8
#MODIFIED ON: 06/01/2014            
8
#MODIFIED ON: 06/19/2014            
9 9
#Version: 3
10 10
#PROJECT: Environmental Layers project     
11 11
#COMMENTS: analyses for run 3 global using 2 specific tiles
......
69 69
#on ATLAS
70 70
#in_dir1 <- "/data/project/layers/commons/NEX_data/test_run1_03232014/output" #On Atlas
71 71
#parent output dir : contains subset of the data produced on NEX
72
in_dir1 <- "/data/project/layers/commons/NEX_data/output_run3_global_analyses_05292014/output"
72
in_dir1 <- "/data/project/layers/commons/NEX_data/output_run3_global_analyses_06192014/output"
73 73
# parent output dir for the curent script analyes
74
out_dir <-"/data/project/layers/commons/NEX_data/output_run3_global_analyses_05292014/" #On NCEAS Atlas
75
out_dir <-"/data/project/layers/commons/NEX_data/output_run3_global_analyses_05292014/"
74
#out_dir <-"/data/project/layers/commons/NEX_data/output_run3_global_analyses_06192014/" #On NCEAS Atlas
75
out_dir <-"/data/project/layers/commons/NEX_data/output_run3_global_analyses_06192014/"
76 76
# input dir containing shapefiles defining tiles
77
in_dir_shp <- "/data/project/layers/commons/NEX_data/output_run3_global_analyses_05292014/output/subset/shapefiles"
77
in_dir_shp <- "/data/project/layers/commons/NEX_data/output_run3_global_analyses_06192014/output/subset/shapefiles"
78 78

  
79 79
#On NEX
80 80
#contains all data from the run by Alberto
......
87 87
in_dir_list <- file.path(in_dir1,read.table(file.path(in_dir1,"processed.txt"))$V1)
88 88
y_var_name <- "dailyTmax"
89 89
interpolation_method <- c("gam_CAI")
90
out_prefix<-"run3_global_analyses_05292014"
90
out_prefix<-"run3_global_analyses_06192014"
91 91

  
92 92
#out_dir <-paste(out_dir,"_",out_prefix,sep="")
93 93
create_out_dir_param <- FALSE
......
102 102
setwd(out_dir)
103 103
                                   
104 104
CRS_locs_WGS84<-CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #Station coords WGS84
105
CRS_WGS84<-c("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #Station coords WGS84
105 106

  
106
region_name <- "USA"
107
region_name <- "world"
107 108

  
108 109
###Table 1: Average accuracy metrics
109 110
###Table 2: daily accuracy metrics for all tiles
......
116 117

  
117 118
###############
118 119
### Figure 1: plot location of the study area with tiles processed
120
list_shp_world <- list.files(in_dir_shp,".shp")
121
l_shp <- unlist(lapply(1:length(list_shp_world),FUN=function(i){paste(strsplit(list_shp_world[i],"_")[[1]][2:3],collapse="_")}))
122
list_shp_reg_files <- as.character(df_tile_processed$tile_coord)
123
#matching_index <- match(l_shp,list_shp_reg_files)
124
matching_index <- match(list_shp_reg_files,l_shp)
125
df_tile_processed$shp_files <-list_shp_world[matching_index]
126

  
127
df_tiled_processed <- na.omit(df_tile_processed) #remove other list of folders irrelevant
128
list_shp_reg_files <- df_tiled_processed$shp_files
129
list_shp_reg_files<- file.path(in_dir_shp,list_shp_reg_files)
119 130

  
120
list_shp_reg_files <- file.path(in_dir_shp,df_tile_processed$shp_files)
121
                                                                    
122 131
### First get background map to display where study area is located
123
#can make this more general later on..                                                                    
124
#usa_map <- getData('GADM', country='USA', level=1) #Get US map
125
usa_map <- getData('GADM', country=region_name,level=1) #Get US map, this is not working right now
126
usa_map_2 <- usa_map[usa_map$NAME_1!="Alaska",] #remove Alaska
127
usa_map_2 <- usa_map_2[usa_map_2$NAME_1!="Hawaii",] #remove Hawai 
132
#can make this more general later on..       
133
if region_name=="USA"{
134
  usa_map <- getData('GADM', country='USA', level=1) #Get US map
135
  #usa_map <- getData('GADM', country=region_name,level=1) #Get US map, this is not working right now
136
  #usa_map_2 <- usa_map[usa_map$NAME_1!="Alaska",] #remove Alaska
137
  reg_layer <- usa_map[usa_map$NAME_1!="Hawaii",] #remove Hawai 
138
}
139

  
140
if region_name=="world"{
141
  #http://www.diva-gis.org/Data
142
  countries_shp <-"/data/project/layers/commons/NEX_data/countries.shp"
143
  path_to_shp <- dirname(countries_shp)
144
  layer_name <- sub(".shp","",basename(countries_shp))
145
  reg_layer <- readOGR(path_to_shp, layer_name)
146
  proj4string(reg_layer) <- CRS_locs_WGS84
147
  #reg_shp<-readOGR(dirname(list_shp_reg_files[[i]]),sub(".shp","",basename(list_shp_reg_files[[i]])))
148

  
149
}
128 150

  
129 151
centroids_pts <- vector("list",length(list_shp_reg_files))
130 152
shps_tiles <- vector("list",length(list_shp_reg_files))
131 153
#collect info: read in all shapfiles
154
#This is slow...make a function and use mclapply??
132 155
for(i in 1:length(list_shp_reg_files)){
133 156
  path_to_shp <- dirname(list_shp_reg_files[[i]])
134
  layer_name <- basename(list_shp_reg_files[[i]])
157
  layer_name <- sub(".shp","",basename(list_shp_reg_files[[i]]))
135 158
  shp1 <- readOGR(path_to_shp, layer_name)
136
  shp1<-readOGR(dirname(list_shp_reg_files[[i]]),sub(".shp","",basename(list_shp_reg_files[[i]])))
159
  #shp1<-readOGR(dirname(list_shp_reg_files[[i]]),sub(".shp","",basename(list_shp_reg_files[[i]])))
137 160
  pt <- gCentroid(shp1)
138 161
  centroids_pts[[i]] <-pt
139 162
  shps_tiles[[i]] <- shp1
......
144 167
col_mfrow <- 1
145 168
row_mfrow <- 1
146 169

  
147
png(filename=paste("Figure1_tile_processed_region_",out_prefix,".png",sep=""),
170
png(filename=paste("Figure1_tile_processed_region_",region_name,"_",out_prefix,".png",sep=""),
148 171
    width=col_mfrow*res_pix,height=row_mfrow*res_pix)
149 172

  
150
plot(usa_map_2)
173
plot(reg_layer)
151 174
#Add polygon tiles...
152 175
for(i in 1:length(list_shp_reg_files)){
153 176
  shp1 <- shps_tiles[[i]]
......
237 260
#y_var_name <-"dailyTmax"
238 261
#index <-244 #index corresponding to Sept 1
239 262
index  <- 1 #index corresponding to Jan 1
240
date_selected <- "20100101"
263
date_selected <- "20100901"
241 264
name_method_var <- paste(interpolation_method,"_",y_var_name,"_",sep="")
242 265

  
243 266
pattern_str <- paste("mosaiced","_",name_method_var,"predicted",".*.",date_selected,".*.tif",sep="")
......
251 274
  col_mfrow <- 1
252 275
  row_mfrow <- 1
253 276
  
254
  png(filename=paste("Figure4_models_predicted_surfaces_",model_name[i],"_",name_method_var,out_prefix,".png",sep=""),
277
  png(filename=paste("Figure4_models_predicted_surfaces_",model_name[i],"_",name_method_var,"_",data_selected,"_",out_prefix,".png",sep=""),
255 278
    width=col_mfrow*res_pix,height=row_mfrow*res_pix)
256 279
  
257 280
  plot(r_pred)
......
260 283
  
261 284
}
262 285

  
263
## plotting of delta and clim for later scripts...
286
####### Figure 5...
287
### Adding tiles do a plot of mod1 with tiles
288

  
289
r_pred <- raster(lf_pred_list[i])
290
  
291
res_pix <- 480
292
col_mfrow <- 1
293
row_mfrow <- 1
294
  
295
png(filename=paste("Figure5_tiles_with_models_predicted_surfaces_",model_name[i],"_",name_method_var,out_prefix,".png",sep=""),
296
    width=col_mfrow*res_pix,height=row_mfrow*res_pix)
297
  
298
plot(r_pred)
299
title(paste("Mosaiced",model_name[i],name_method_var,date_selected,"with tiles",sep=" "))
300

  
301
#Add polygon tiles...
302
for(i in 1:length(list_shp_reg_files)){
303
  shp1 <- shps_tiles[[i]]
304
  pt <- centroids_pts[[i]]
305
  plot(shp1,add=T,border="blue")
306
  #plot(pt,add=T,cex=2,pch=5)
307
  label_id <- df_tile_processed$tile_id[i]
308
  text(coordinates(pt)[1],coordinates(pt)[2],labels=i,cex=1,col=c("red"))
309
}
310
#title(paste("Prediction with tiles location 10x10 degrees for ", region_name,sep=""))
311
dev.off()
312

  
313
### 
264 314

  
265 315
#### Now combined plot...
316
#Use the function to match extent...
266 317

  
267 318
#pred_s <- stack(lf_list) #problem different extent!!
268 319
#methods_names <-c("gam","kriging","gwr")
......
295 346
#dev.off()
296 347

  
297 348
######################
298
### Figure 5: plot map of average RMSE per tile at centroids
349
### Figure 6: plot map of average RMSE per tile at centroids
299 350

  
300 351
#Turn summary table to a point shp
301 352

  
302 353
coordinates(summary_metrics_v) <- cbind(summary_metrics_v$lon,summary_metrics_v$lat)
303 354
proj4string(summary_metrics_v) <- CRS_WGS84
355
lf_list <- lf_pred_list
304 356
list_df_ac_mod <- vector("list",length=length(lf_pred_list))
305 357
for (i in 1:length(lf_list)){
306 358
  
......
311 363
  col_mfrow <- 1
312 364
  row_mfrow <- 1
313 365

  
314
  png(filename=paste("Figure5_ac_metrics_map_centroids_tile_",model_name[i],"_",out_prefix,".png",sep=""),
366
  png(filename=paste("Figure6_ac_metrics_map_centroids_tile_",model_name[i],"_",out_prefix,".png",sep=""),
315 367
    width=col_mfrow*res_pix,height=row_mfrow*res_pix)
316 368

  
317 369
  plot(r_pred)  
......
332 384
#autokrige(rmse~1,r2,)
333 385

  
334 386
######################
335
### Figure 6: Histograms...
387
### Figure 7: Delta and clim...
388

  
389
## plotting of delta and clim for later scripts...
390

  
391
######################
392
### Figure 8: Histograms...
336 393

  
337 394

  
338 395
##################### END OF SCRIPT ######################

Also available in: Unified diff