Revision a449dc3e
Added by Benoit Parmentier over 11 years ago
climate/research/oregon/interpolation/master_script_temp.R | ||
---|---|---|
10 | 10 |
#STAGE 5: Output analyses: assessment of results for specific dates... |
11 | 11 |
# |
12 | 12 |
#AUTHOR: Benoit Parmentier |
13 |
#DATE: 07/21/2013
|
|
13 |
#DATE: 07/27/2013
|
|
14 | 14 |
|
15 | 15 |
#PROJECT: NCEAS INPLANT: Environment and Organisms --TASK#363, TASK$568-- |
16 | 16 |
|
... | ... | |
48 | 48 |
|
49 | 49 |
##SCRIPT USED FOR THE PREDICTIONS: Source or list all scripts here to avoid confusion on versions being run!!!! |
50 | 50 |
|
51 |
#source(file.path(script_path,"master_script_temp_07232013.R")) #Master script can be run directly...
|
|
51 |
#source(file.path(script_path,"master_script_temp_0762013.R")) #Master script can be run directly...
|
|
52 | 52 |
|
53 | 53 |
#CALLED FROM MASTER SCRIPT: |
54 | 54 |
|
... | ... | |
58 | 58 |
#source(file.path(script_path,"download_and_produce_MODIS_LST_climatology_06112013.R")) |
59 | 59 |
source(file.path(script_path,"covariates_production_temperatures_07172013.R")) |
60 | 60 |
source(file.path(script_path,"Database_stations_covariates_processing_function_06112013.R")) |
61 |
source(file.path(script_path,"GAM_fusion_analysis_raster_prediction_multisampling_07172013.R"))
|
|
61 |
source(file.path(script_path,"GAM_fusion_analysis_raster_prediction_multisampling_07272013.R"))
|
|
62 | 62 |
source(file.path(script_path,"results_interpolation_date_output_analyses_06112013.R")) |
63 | 63 |
#source(file.path(script_path,"results_covariates_database_stations_output_analyses_04012013.R")) #to be completed |
64 | 64 |
|
65 | 65 |
#FUNCTIONS CALLED FROM GAM ANALYSIS RASTER PREDICTION ARE FOUND IN... |
66 | 66 |
|
67 | 67 |
source(file.path(script_path,"sampling_script_functions_03122013.R")) |
68 |
source(file.path(script_path,"GAM_fusion_function_multisampling_07022013.R")) #Include GAM_CAI
|
|
68 |
source(file.path(script_path,"GAM_fusion_function_multisampling_07272013.R")) #Include GAM_CAI
|
|
69 | 69 |
source(file.path(script_path,"interpolation_method_day_function_multisampling_07052013.R")) #Include GAM_day |
70 | 70 |
source(file.path(script_path,"GAM_fusion_function_multisampling_validation_metrics_05062013.R")) |
71 | 71 |
|
... | ... | |
77 | 77 |
#If stage 3 is skipped then use previous met_stations object |
78 | 78 |
met_stations_outfiles_obj_file<-"/data/project/layers/commons/data_workflow/output_data_365d_gam_fus_lst_test_run_07172013/met_stations_outfiles_obj_gam_fusion__365d_gam_fus_lst_test_run_07172013.RData" |
79 | 79 |
|
80 |
|
|
81 | 80 |
var<-"TMAX" # variable being interpolated |
82 |
out_prefix<-"_365d_gam_day_mults15_lst_comb3_07232013" #User defined output prefix
|
|
83 |
out_suffix<-"_OR_07232013" #Regional suffix
|
|
81 |
out_prefix<-"_365d_kriging_fus_lst_comb3_07282013" #User defined output prefix
|
|
82 |
out_suffix<-"_OR_07282013" #Regional suffix
|
|
84 | 83 |
out_suffix_modis <-"_05302013" #pattern to find tiles produced previously |
85 | 84 |
|
86 | 85 |
#interpolation_method<-c("gam_fusion","gam_CAI","gam_daily") #other otpions to be added later |
87 | 86 |
#interpolation_method<-c("gam_CAI") #other otpions to be added later |
88 | 87 |
#interpolation_method<-c("gam_fusion") #other otpions to be added later |
89 |
interpolation_method<-c("gam_daily") #other otpions to be added later |
|
88 |
interpolation_method<-c("kriging_fusion") #other otpions to be added later |
|
89 |
#interpolation_method<-c("gam_daily") #other otpions to be added later |
|
90 | 90 |
#interpolation_method<-c("kriging_daily") #other otpions to be added later |
91 | 91 |
#interpolation_method<-c("gwr_daily") #other otpions to be added later |
92 | 92 |
|
... | ... | |
236 | 236 |
#Set additional parameters |
237 | 237 |
#Input for sampling function... |
238 | 238 |
seed_number<- 100 #if seed zero then no seed? |
239 |
nb_sample<-10 #number of time random sampling must be repeated for every hold out proportion
|
|
240 |
step<-0.1
|
|
239 |
nb_sample<-1 #number of time random sampling must be repeated for every hold out proportion |
|
240 |
step<-0 |
|
241 | 241 |
constant<-0 #if value 1 then use the same samples as date one for the all set of dates |
242 |
prop_minmax<-c(0.1,0.7) #if prop_min=prop_max and step=0 then predicitons are done for the number of dates...
|
|
242 |
prop_minmax<-c(0.3,0.3) #if prop_min=prop_max and step=0 then predicitons are done for the number of dates...
|
|
243 | 243 |
#dates_selected<-c("20100101","20100102","20100103","20100901") # Note that the dates set must have a specific format: yyymmdd |
244 |
dates_selected<-c("20100101","20100102","20100301","20100302","20100501","20100502","20100701","20100702","20100901","20100902","20101101","20101102") |
|
245 |
#dates_selected<-"" # if empty string then predict for the full year specified earlier
|
|
244 |
#dates_selected<-c("20100101","20100102","20100301","20100302","20100501","20100502","20100701","20100702","20100901","20100902","20101101","20101102")
|
|
245 |
dates_selected<-"" # if empty string then predict for the full year specified earlier |
|
246 | 246 |
screen_data_training<-FALSE #screen training data for NA and use same input training for all models fitted |
247 | 247 |
|
248 | 248 |
#Models to run...this can be changed for each run |
249 | 249 |
#LC1: Evergreen/deciduous needleleaf trees |
250 | 250 |
|
251 | 251 |
#Combination 3: for paper baseline=s(lat,lon)+s(elev) |
252 |
list_models<-c("y_var ~ s(lat,lon) + s(elev_s)", |
|
253 |
"y_var ~ s(lat,lon) + s(elev_s) + s(N_w)", |
|
254 |
"y_var ~ s(lat,lon) + s(elev_s) + s(E_w)", |
|
255 |
"y_var ~ s(lat,lon) + s(elev_s) + s(LST)", |
|
256 |
"y_var ~ s(lat,lon) + s(elev_s) + s(DISTOC)", |
|
257 |
"y_var ~ s(lat,lon) + s(elev_s) + s(LC1)", |
|
258 |
"y_var ~ s(lat,lon) + s(elev_s) + s(CANHGHT)", |
|
259 |
"y_var ~ s(lat,lon) + s(elev_s) + s(LST) + ti(LST,LC1)", |
|
260 |
"y_var ~ s(lat,lon) + s(elev_s) + s(LST) + ti(LST,CANHGHT)") |
|
252 |
# list_models<-c("y_var ~ s(lat,lon) + s(elev_s)", |
|
253 |
# "y_var ~ s(lat,lon) + s(elev_s) + s(N_w)", |
|
254 |
# "y_var ~ s(lat,lon) + s(elev_s) + s(E_w)", |
|
255 |
# "y_var ~ s(lat,lon) + s(elev_s) + s(LST)", |
|
256 |
# "y_var ~ s(lat,lon) + s(elev_s) + s(DISTOC)", |
|
257 |
# "y_var ~ s(lat,lon) + s(elev_s) + s(LC1)", |
|
258 |
# "y_var ~ s(lat,lon) + s(elev_s) + s(CANHGHT)", |
|
259 |
# "y_var ~ s(lat,lon) + s(elev_s) + s(LST) + ti(LST,LC1)", |
|
260 |
# "y_var ~ s(lat,lon) + s(elev_s) + s(LST) + ti(LST,CANHGHT)") |
|
261 |
|
|
262 |
list_models<-c("y_var ~ lat*lon + elev_s", |
|
263 |
"y_var ~ lat*lon + elev_s + N_w", |
|
264 |
"y_var ~ lat*lon + elev_s + E_w", |
|
265 |
"y_var ~ lat*lon + elev_s + LST", |
|
266 |
"y_var ~ lat*lon + elev_s + DISTOC", |
|
267 |
"y_var ~ lat*lon + elev_s + LC1", |
|
268 |
"y_var ~ lat*lon + elev_s + CANHGHT", |
|
269 |
"y_var ~ lat*lon + elev_s + LST + I(LST*LC1)", |
|
270 |
"y_var ~ lat*lon + elev_s + LST + I(LST*CANHGHT)") |
|
271 |
|
|
261 | 272 |
#Default name of LST avg to be matched |
262 | 273 |
lst_avg<-c("mm_01","mm_02","mm_03","mm_04","mm_05","mm_06","mm_07","mm_08","mm_09","mm_10","mm_11","mm_12") |
263 | 274 |
|
Also available in: Unified diff
master script, running first predictions of temp using kriging fusion in OR