Project

General

Profile

« Previous | Next » 

Revision a5ab37e3

Added by Benoit Parmentier over 11 years ago

master script, multisampling first predictions with new code using prop hold out 10% to 70%

View differences:

climate/research/oregon/interpolation/master_script_temp.R
10 10
#STAGE 5: Output analyses: assessment of results for specific dates...
11 11
#
12 12
#AUTHOR: Benoit Parmentier                                                                       
13
#DATE: 07/18/2013                                                                                 
13
#DATE: 07/21/2013                                                                                 
14 14

  
15 15
#PROJECT: NCEAS INPLANT: Environment and Organisms --TASK#363, TASK$568--   
16 16

  
......
71 71

  
72 72
#stages_to_run<-c(1,2,3,4,5) #May decide on antoher strategy later on...
73 73
#stages_to_run<-c(0,2,3,4,5) #May decide on antoher strategy later on...
74
stages_to_run<-c(0,0,0,4,5) #MRun only raster fitting, prediction and assessemnt (providing lst averages, covar brick and met stations)
74
stages_to_run<-c(0,2,3,4,5) #MRun only raster fitting, prediction and assessemnt (providing lst averages, covar brick and met stations)
75 75
#If stage 2 is skipped then use previous covar object
76 76
covar_obj_file<-"/data/project/layers/commons/data_workflow/output_data_365d_gam_fus_lst_test_run_07172013/covar_obj__365d_gam_fus_lst_test_run_07172013.RData"
77 77
#If stage 3 is skipped then use previous met_stations object
......
79 79

  
80 80

  
81 81
var<-"TMAX" # variable being interpolated
82
out_prefix<-"_365d_gam_fus_lst_test_run_07182013"                #User defined output prefix
83
out_suffix<-"_OR_07182013"                                       #Regional suffix
82
out_prefix<-"_365d_gam_day_mult_lst_comb3_07202013"                #User defined output prefix
83
out_suffix<-"_OR_07202013"                                       #Regional suffix
84 84
out_suffix_modis <-"_05302013"                       #pattern to find tiles produced previously     
85 85

  
86 86
#interpolation_method<-c("gam_fusion","gam_CAI","gam_daily") #other otpions to be added later
87 87
#interpolation_method<-c("gam_CAI") #other otpions to be added later
88
interpolation_method<-c("gam_fusion") #other otpions to be added later
89
#interpolation_method<-c("gam_daily") #other otpions to be added later
88
#interpolation_method<-c("gam_fusion") #other otpions to be added later
89
interpolation_method<-c("gam_daily") #other otpions to be added later
90 90
#interpolation_method<-c("kriging_daily") #other otpions to be added later
91 91
#interpolation_method<-c("gwr_daily") #other otpions to be added later
92 92

  
93
#out_path <- paste("/home/parmentier/Data/IPLANT_project/Venezuela_interpolation/Venezuela_01142013/output_data",
94
#                  out_prefix,"/",sep="")
95
out_path<-"/data/project/layers/commons/data_workflow/output_data"
93
out_path<-"/home/parmentier/Data/IPLANT_project/Oregon_interpolation/Oregon_03142013/output_data"
94

  
95
#out_path<-"/data/project/layers/commons/data_workflow/output_data"
96 96
out_path <-paste(out_path,out_prefix,sep="")
97 97

  
98 98
if (!file.exists(out_path)){
......
236 236
#Set additional parameters
237 237
#Input for sampling function...
238 238
seed_number<- 100  #if seed zero then no seed?     
239
nb_sample<-1           #number of time random sampling must be repeated for every hold out proportion
240
step<-0         
239
nb_sample<-15           #number of time random sampling must be repeated for every hold out proportion
240
step<-0.1         
241 241
constant<-0             #if value 1 then use the same samples as date one for the all set of dates
242
prop_minmax<-c(0.3,0.3)  #if prop_min=prop_max and step=0 then predicitons are done for the number of dates...
242
prop_minmax<-c(0.1,0.7)  #if prop_min=prop_max and step=0 then predicitons are done for the number of dates...
243 243
#dates_selected<-c("20100101","20100102","20100103","20100901") # Note that the dates set must have a specific format: yyymmdd
244
dates_selected<-"" # if empty string then predict for the full year specified earlier
244
dates_selected<-c("20100101","20100102","20100301","20100302","20100501","20100502","20100701","20100702","20100901","20100902","20101101","20101102")
245
#dates_selected<-"" # if empty string then predict for the full year specified earlier
245 246
screen_data_training<-FALSE #screen training data for NA and use same input training for all models fitted
246 247

  
247 248
#Models to run...this can be changed for each run
248 249
#LC1: Evergreen/deciduous needleleaf trees
249 250

  
250
#Combination for test run:
251

  
252
list_models<-c("y_var ~ s(elev_s)",
253
                "y_var ~ s(LST)",
254
                "y_var ~ s(lat,lon)+ s(elev_s)",
255
                "y_var ~ te(lat,lon,elev_s)",
256
                "y_var ~ s(lat,lon) + s(elev_s) + s(N_w,E_w) + s(LST)", 
257
                "y_var ~ s(lat,lon) + s(elev_s) + s(N_w,E_w) + s(LST) + s(LC1)") 
258

  
251
#Combination 3: for paper baseline=s(lat,lon)+s(elev)
252
list_models<-c("y_var ~ s(lat,lon) + s(elev_s)",
253
              "y_var ~ s(lat,lon) + s(elev_s) + s(N_w)",
254
              "y_var ~ s(lat,lon) + s(elev_s) + s(E_w)",
255
              "y_var ~ s(lat,lon) + s(elev_s) + s(LST)",
256
              "y_var ~ s(lat,lon) + s(elev_s) + s(DISTOC)",
257
              "y_var ~ s(lat,lon) + s(elev_s) + s(LC1)",
258
              "y_var ~ s(lat,lon) + s(elev_s) + s(CANHGHT)",
259
              "y_var ~ s(lat,lon) + s(elev_s) + s(LST) + ti(LST,LC1)",
260
              "y_var ~ s(lat,lon) + s(elev_s) + s(LST) + ti(LST,CANHGHT)")
259 261
#Default name of LST avg to be matched               
260 262
lst_avg<-c("mm_01","mm_02","mm_03","mm_04","mm_05","mm_06","mm_07","mm_08","mm_09","mm_10","mm_11","mm_12")  
261 263

  

Also available in: Unified diff