Project

General

Profile

« Previous | Next » 

Revision ac284468

Added by Adam Wilson almost 11 years ago

Update visualization for Berkeley talk

View differences:

climate/research/cloud/MOD09/MOD09_Visualize.R
84 84
r="Venezuela"
85 85

  
86 86
## print global map with box for region
87
png(paste("output/CF_mean_regbox.png",sep=""),width=1920,height=round(1920*d1),res=300,pointsize=46,bg="white")
87 88
print(levelplot(mc[[1]],col.regions=cols(100),at=seq(1,100,len=100),margin=F,maxpixels=2.1e6,ylim=c(extent(coast2)@ymin,extent(coast2)@ymax),
88 89
                main=paste(month.name[i]),cex.main=3,scales=list(draw=F),cuts=99,ylab="",xlab="")+
89 90
      layer(panel.polygon(c(extent(world)@xmin,extent(world)@xmin,extent(world)@xmax,extent(world)@xmax),y=c(extent(world)@ymin,extent(world)@ymax,extent(world)@ymax,extent(world)@ymin),col="black"),under=T)+
90 91
      layer(sp.lines(coast2,col="black"),under=F)+
91 92
      layer(sp.lines(world,col="black"),under=F)+
92
      layer(sp.lines(regs[[r]],col="blue",lwd=2),under=F))
93

  
93
      layer(sp.lines(as(regs2[[r]],"SpatialLines"),col="blue",lwd=2),under=F))
94
dev.off()
94 95

  
95 96
                                        # ylab.right = "Cloud Frequency (%)",par.settings = list(layout.widths = list(axis.key.padding = 0.1,axis.left=0.6,ylab.right = 3,right.padding=2)),
96 97

  
climate/research/cloud/MOD09/ee/ee_compile.R
66 66

  
67 67
        ## mask no data regions (with less than 1 observation per day within that month)
68 68
        biasf=function(cf,cfsd,nobs,pobs) {
69
            ## drop data in areass with nobs<1 or pobs<=50 or where sd=0 and cf=0 or 50 (some polar regions)
69
            ## drop data in areas with nobs<1 or pobs<=50 or where sd=0 and cf=0 or 50 (some polar regions)
70 70
            drop=nobs<=0|pobs<=50|(cf==0&cfsd==0)|(cf==50&cfsd==0)
71 71
            cf[drop]=NA
72 72
            cfsd[drop]=NA
73 73
            return(c(cf=cf,cfsd=cfsd,nobs=nobs,pobs=pobs))}
74

  
75 74
                
76 75
        mod2=overlay(mod,fun=biasf,unstack=TRUE,filename=ttif1,format="GTiff",
77 76
            dataType="INT1U",overwrite=T,NAflag=255, options=c("COMPRESS=LZW","BIGTIFF=YES"))
......
124 123
        ttif2=paste(tmpfs,"/",s,"_",m,"_wgs84.tif",sep="")
125 124
        ncfile=paste("data/mcd09nc/",s,"_",m,".nc",sep="")
126 125

  
126
        ## set up processing chunks
127
        nrw=nrow(mod)
128
        nby=20
129
        nrwg=seq(1,nrw,by=nby)
130
        writeLines(paste("Processing ",length(nrwg)," groups and",nrw,"lines"))
131

  
132

  
127 133
        modpts=sampleRandom(cmod, size=10000, na.rm=TRUE, xy=T, sp=T)
128 134
        rm(cmod)  #remove temporary raster to save space
129 135
        modpts=modpts[modpts$nobs>0,]  #drop data from missing tiles
......
133 139
        modbeta1=coef(modlm1)["pobs"]
134 140

  
135 141
        writeLines(paste(date,"       slope:",round(modbeta1,4)))
136
        ## Smooth data to remove large-grain variability
137
#        system(paste("pkfilter -f mean -dx 99 -dy 99 -ot Byte -i ",df$path[df$month==m&df$sensor==s][1]," -o ",ttif1))
138 142

  
139 143
        ## mask no data regions (with less than 1 observation per day within that month)
140 144
        ## use model above to correct for orbital artifacts

Also available in: Unified diff