Project

General

Profile

« Previous | Next » 

Revision ad6af007

Added by Benoit Parmentier over 9 years ago

running assessment part2 South America

View differences:

climate/research/oregon/interpolation/global_run_scalingup_assessment_part2.R
5 5
#Analyses, figures, tables and data are also produced in the script.
6 6
#AUTHOR: Benoit Parmentier 
7 7
#CREATED ON: 03/23/2014  
8
#MODIFIED ON: 09/23/2015            
8
#MODIFIED ON: 10/05/2015            
9 9
#Version: 4
10 10
#PROJECT: Environmental Layers project     
11 11
#COMMENTS: analyses for run 10 global analyses,all regions 1500x4500km with additional tiles to increase overlap 
......
85 85

  
86 86
#On NEX
87 87
#contains all data from the run by Alberto
88
#in_dir1 <- "/nobackupp4/aguzman4/climateLayers/output4" #On NEX
88
#in_dir1 <- " /nobackupp6/aguzman4/climateLayers/out_15x45/" #On NEX
89 89
#parent output dir for the current script analyes
90 90
#out_dir <- "/nobackup/bparmen1/" #on NEX
91 91
#in_dir_shp <- "/nobackupp4/aguzman4/climateLayers/output4/subset/shapefiles/"
......
94 94
interpolation_method <- c("gam_CAI") #PARAM2
95 95
#out_suffix<-"run10_global_analyses_01282015"
96 96
#out_suffix <- "output_run10_1000x3000_global_analyses_02102015"
97
out_suffix <- "run10_1500x4500_global_analyses_pred_1982_09152015" #PARAM3
98
out_dir <- "/data/project/layers/commons/NEX_data/output_run10_1500x4500_global_analyses_pred_1982_09152015" #PARAM4
97
out_suffix <- "run10_1500x4500_global_analyses_pred_1992_10052015" #PARAM3
98
out_dir <- "/data/project/layers/commons/NEX_data/output_run10_1500x4500_global_analyses_pred_1992_10052015" #PARAM4
99 99
create_out_dir_param <- FALSE #PARAM 5
100 100

  
101 101
mosaic_plot <- FALSE #PARAM6
102 102

  
103 103
#if daily mosaics NULL then mosaicas all days of the year
104 104

  
105
day_to_mosaic <- c("19820101","19820102","19820103","19820104","19820105",
106
                   "19820106","19820107","19820108","19820109","19820110",
107
                   "1982011")
105
day_to_mosaic <- c("19920101","19920102","19920103")
106

  
108 107

  
109 108
CRS_WGS84 <- CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #Station coords WGS84 #CONSTANT1
110 109
CRS_locs_WGS84<-CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #Station coords WGS84
......
574 573
  p <- bubble(summary_metrics_v_subset,"n_missing",main=paste("Missing per tile and by ",model_name[j]," for ",
575 574
                                                              threshold_missing_day[i]))
576 575
  p1 <- p+p_shp
577
  print(p1)
576
  try(print(p1)) #error raised if number of missing values below a threshold does not exist
578 577
  #plot(ac_mod1,cex=(ac_mod1$rmse1)*2,pch=1,add=T)
579 578
  #title(paste("Averrage RMSE per tile and by ",model_name[i]))
580 579

  

Also available in: Unified diff