Project

General

Profile

Download (6.86 KB) Statistics
| Branch: | Revision:
1
# R code to plot latitudinal profiles of mean elevation, along with both
2
# RMSE and correlation coefficients comparing fused layers with both the
3
# raw ASTER and with the Canada DEM
4
#
5
# Jim Regetz
6
# NCEAS
7
# Created on 08-Jun-2011
8

    
9
library(raster)
10

    
11
datadir <- "/home/regetz/media/temp/terrain/dem"
12

    
13
# load elevation rasters
14
d.aster <- raster(file.path(datadir, "aster_300straddle.tif"))
15
d.srtm <- raster(file.path(datadir, "srtm_150below.tif"))
16
d.uncor <- raster(file.path(datadir, "fused_300straddle.tif"))
17
d.eramp <- raster(file.path(datadir, "fused_300straddle_rampexp.tif"))
18
d.bg <- raster(file.path(datadir, "fused_300straddle_blendgau.tif"))
19
d.can <- raster(file.path(datadir, "cdem_300straddle.tif"))
20

    
21
# extract raster latitudes for later
22
lats300 <- yFromRow(d.aster, 1:nrow(d.aster))
23
lats150 <- yFromRow(d.srtm, 1:nrow(d.srtm))
24

    
25
# initialize output pdf device driver
26
pdf("elevation-assessment.pdf", height=8, width=11.5)
27

    
28

    
29
#
30
# plot latitudinal profiles of mean elevation
31
#
32

    
33
par(mfrow=c(2,2), omi=c(1,1,1,1))
34

    
35
ylim <- c(550, 575)
36

    
37
plot(lats300, rowMeans(as.matrix(d.uncor), na.rm=TRUE), type="l",
38
    xlab="Latitude", ylab="Mean elevation", ylim=ylim)
39
text(min(lats300), min(ylim)+0.5, pos=4, font=3, labels="uncorrected")
40
abline(v=60, col="red", lty=2)
41
mtext(expression(paste("Latitudinal profiles of mean elevation (",
42
    136*degree, "W to ", 96*degree, "W)")), adj=0, line=2, font=2)
43

    
44
plot(lats300, rowMeans(as.matrix(d.can), na.rm=TRUE), type="l",
45
    xlab="Latitude", ylab="Mean elevation", ylim=ylim)
46
text(min(lats300), min(ylim)+0.5, pos=4, font=3, labels="Canada DEM")
47
abline(v=60, col="red", lty=2)
48

    
49
plot(lats300, rowMeans(as.matrix(d.eramp), na.rm=TRUE), type="l",
50
    xlab="Latitude", ylab="Mean elevation", ylim=ylim)
51
text(min(lats300), min(ylim)+0.5, pos=4, font=3, labels="exponential ramp")
52
abline(v=60, col="red", lty=2)
53

    
54
plot(lats300, rowMeans(as.matrix(d.bg), na.rm=TRUE), type="l",
55
    xlab="Latitude", ylab="Mean elevation", ylim=ylim)
56
text(min(lats300), min(ylim)+0.5, pos=4, font=3, labels="gaussian blend")
57
abline(v=60, col="red", lty=2)
58

    
59

    
60
#
61
# plot latitudinal profiles of RMSE
62
#
63

    
64
# simple helper function to calculate row-wise RMSEs
65
rmse <- function(r1, r2, na.rm=TRUE, use) {
66
    diffs <- abs(as.matrix(r1) - as.matrix(r2))
67
    if (!missing(use)) diffs[!use] <- NA
68
    sqrt(rowMeans(diffs^2, na.rm=na.rm))
69
}
70

    
71
par(mfrow=c(2,3), omi=c(1,1,1,1))
72

    
73
ylim <- c(0, 35)
74

    
75
# ...with respect to ASTER
76
plot(lats300, rmse(d.uncor, d.aster), type="l", xlab="Latitude",
77
    ylab="RMSE", ylim=ylim)
78
lines(lats150, rmse(crop(d.uncor, extent(d.srtm)), d.srtm), col="blue")
79
legend("topright", legend=c("ASTER", "SRTM"), col=c("black", "blue"),
80
    lty=c(1, 1), bty="n")
81
text(min(lats300), max(ylim)-1, pos=4, font=3, labels="uncorrected")
82
abline(v=60, col="red", lty=2)
83
mtext(expression(paste(
84
    "Elevation discrepancies with respect to separate ASTER/SRTM components (",
85
    136*degree, "W to ", 96*degree, "W)")), adj=0, line=2, font=2)
86

    
87
plot(lats300, rmse(d.eramp, d.aster), type="l", xlab="Latitude",
88
    ylab="RMSE", ylim=ylim)
89
lines(lats150, rmse(crop(d.eramp, extent(d.srtm)), d.srtm), col="blue")
90
legend("topright", legend=c("ASTER", "SRTM"), col=c("black", "blue"),
91
    lty=c(1, 1), bty="n")
92
text(min(lats300), max(ylim)-1, pos=4, font=3, labels="exponential ramp")
93
abline(v=60, col="red", lty=2)
94

    
95
plot(lats300, rmse(d.bg, d.aster), type="l", xlab="Latitude",
96
    ylab="RMSE", ylim=ylim)
97
lines(lats150, rmse(crop(d.bg, extent(d.srtm)), d.srtm), col="blue")
98
legend("topright", legend=c("ASTER", "SRTM"), col=c("black", "blue"),
99
    lty=c(1, 1), bty="n")
100
text(min(lats300), max(ylim)-1, pos=4, font=3, labels="gaussian blend")
101
abline(v=60, col="red", lty=2)
102

    
103
# ...with respect to CDEM
104
plot(lats300, rmse(d.uncor, d.can), type="l", xlab="Latitude",
105
    ylab="RMSE", ylim=ylim)
106
text(min(lats300), max(ylim)-1, pos=4, font=3, labels="uncorrected")
107
abline(v=60, col="red", lty=2)
108
mtext(expression(paste(
109
    "Elevation discrepancies with respect to Canada DEM (",
110
    136*degree, "W to ", 96*degree, "W)")), adj=0, line=2, font=2)
111

    
112
plot(lats300, rmse(d.eramp, d.can), type="l", xlab="Latitude",
113
    ylab="RMSE", ylim=ylim)
114
text(min(lats300), max(ylim)-1, pos=4, font=3, labels="exponential ramp")
115
abline(v=60, col="red", lty=2)
116

    
117
plot(lats300, rmse(d.bg, d.can), type="l", xlab="Latitude",
118
    ylab="RMSE", ylim=ylim)
119
text(min(lats300), max(ylim)-1, pos=4, font=3, labels="gaussian blend")
120
abline(v=60, col="red", lty=2)
121

    
122

    
123
#
124
# plot latitudinal profiles of correlation coefficients
125
#
126

    
127
# simple helper function to calculate row-wise correlation coefficients
128
corByLat <- function(r1, r2, rows) {
129
    if (missing(rows)) {
130
        rows <- 1:nrow(r1)
131
    }
132
    m1 <- as.matrix(r1)
133
    m2 <- as.matrix(r2)
134
    sapply(rows, function(row) cor(m1[row,], m2[row,],
135
        use="pairwise.complete.obs"))
136
}
137

    
138
par(mfrow=c(2,3), omi=c(1,1,1,1))
139

    
140
ylim <- c(0.99, 1)
141

    
142
# ...with respect to ASTER
143
plot(lats300, corByLat(d.uncor, d.aster), type="l", xlab="Latitude",
144
    ylab="Correlation", ylim=ylim)
145
lines(lats150, corByLat(crop(d.uncor, extent(d.srtm)), d.srtm), col="blue")
146
legend("bottomright", legend=c("ASTER", "SRTM"), col=c("black", "blue"),
147
    lty=c(1, 1), bty="n")
148
text(min(lats300), min(ylim), pos=4, font=3, labels="uncorrected")
149
abline(v=60, col="red", lty=2)
150
mtext(expression(paste(
151
    "Elevation correlations with respect to separate ASTER/SRTM components (",
152
    136*degree, "W to ", 96*degree, "W)")), adj=0, line=2, font=2)
153

    
154
plot(lats300, corByLat(d.eramp, d.aster), type="l", xlab="Latitude",
155
    ylab="Correlation", ylim=ylim)
156
lines(lats150, corByLat(crop(d.eramp, extent(d.srtm)), d.srtm), col="blue")
157
legend("bottomright", legend=c("ASTER", "SRTM"), col=c("black", "blue"),
158
    lty=c(1, 1), bty="n")
159
text(min(lats300), min(ylim), pos=4, font=3, labels="exponential ramp")
160
abline(v=60, col="red", lty=2)
161

    
162
plot(lats300, corByLat(d.bg, d.aster), type="l", xlab="Latitude",
163
    ylab="Correlation", ylim=ylim)
164
lines(lats150, corByLat(crop(d.bg, extent(d.srtm)), d.srtm), col="blue")
165
legend("bottomright", legend=c("ASTER", "SRTM"), col=c("black", "blue"),
166
    lty=c(1, 1), bty="n")
167
text(min(lats300), min(ylim), pos=4, font=3, labels="gaussian blend")
168
abline(v=60, col="red", lty=2)
169

    
170
# ...with respect to CDEM
171
plot(lats300, corByLat(d.uncor, d.can), type="l", xlab="Latitude",
172
    ylab="Correlation", ylim=ylim)
173
text(min(lats300), min(ylim), pos=4, font=3, labels="uncorrected")
174
abline(v=60, col="red", lty=2)
175
mtext(expression(paste(
176
    "Elevation correlations with respect to Canada DEM (",
177
    136*degree, "W to ", 96*degree, "W)")), adj=0, line=2, font=2)
178

    
179
plot(lats300, corByLat(d.eramp, d.can), type="l", xlab="Latitude",
180
    ylab="Correlation", ylim=ylim)
181
text(min(lats300), min(ylim), pos=4, font=3, labels="exponential ramp")
182
abline(v=60, col="red", lty=2)
183

    
184
plot(lats300, corByLat(d.bg, d.can), type="l", xlab="Latitude",
185
    ylab="Correlation", ylim=ylim)
186
text(min(lats300), min(ylim), pos=4, font=3, labels="gaussian blend")
187
abline(v=60, col="red", lty=2)
188

    
189
# close pdf device driver
190
dev.off()
191

    
(1-1/3)