Revision b2298f8e
Added by Benoit Parmentier about 11 years ago
climate/research/oregon/interpolation/multi_timescale_paper_interpolation.R | ||
---|---|---|
5 | 5 |
#Figures, tables and data for the paper are also produced in the script. |
6 | 6 |
#AUTHOR: Benoit Parmentier |
7 | 7 |
#CREATED ON: 10/31/2013 |
8 |
#MODIFIED ON: 11/15/2013
|
|
8 |
#MODIFIED ON: 12/02/2013
|
|
9 | 9 |
#Version: 1 |
10 | 10 |
#PROJECT: Environmental Layers project |
11 | 11 |
################################################################################################# |
... | ... | |
32 | 32 |
library(automap) # Kriging automatic fitting of variogram using gstat |
33 | 33 |
library(rgeos) # Geometric, topologic library of functions |
34 | 34 |
#RPostgreSQL # Interface R and Postgres, not used in this script |
35 |
|
|
35 |
library(gridExtra) |
|
36 | 36 |
#Additional libraries not used in workflow |
37 | 37 |
library(pgirmess) # Krusall Wallis test with mulitple options, Kruskalmc {pgirmess} |
38 | 38 |
|
39 | 39 |
#### FUNCTION USED IN SCRIPT |
40 | 40 |
|
41 | 41 |
function_analyses_paper1 <-"contribution_of_covariates_paper_interpolation_functions_10222013.R" |
42 |
function_analyses_paper2 <-"multi_timescales_paper_interpolation_functions_11252013.R"
|
|
42 |
function_analyses_paper2 <-"multi_timescales_paper_interpolation_functions_12022013.R"
|
|
43 | 43 |
|
44 | 44 |
############################## |
45 | 45 |
#### Parameters and constants |
... | ... | |
51 | 51 |
#direct methods: gam, kriging, gwr |
52 | 52 |
in_dir1 <-"/data/project/layers/commons/Oregon_interpolation/output_data_365d_gam_daily_lst_comb5_11012013" |
53 | 53 |
in_dir2 <-"/data/project/layers/commons/Oregon_interpolation/output_data_365d_kriging_daily_lst_comb5_11022013" |
54 |
in_dir3 <-"/data/project/layers/commons/Oregon_interpolation/output_data_365d_gwr_daily_lst_comb5p1_3_11062013" |
|
54 |
in_dir3a <-"/data/project/layers/commons/Oregon_interpolation/output_data_365d_gwr_daily_lst_comb5p1_3_11062013" |
|
55 |
in_dir3b <-"/data/project/layers/commons/Oregon_interpolation/output_data_365d_gwr_daily_lst_comb5p4_7_11292013" |
|
56 |
|
|
55 | 57 |
#CAI: gam, kriging, gwr |
56 | 58 |
in_dir4 <-"/data/project/layers/commons/Oregon_interpolation/output_data_365d_gam_cai_lst_comb5_11032013" |
57 | 59 |
in_dir5 <-"/data/project/layers/commons/Oregon_interpolation/output_data_365d_kriging_cai_lst_comb5_11032013" |
... | ... | |
60 | 62 |
in_dir7 <-"/data/project/layers/commons/Oregon_interpolation/output_data_365d_gam_fss_lst_comb5_11062013" |
61 | 63 |
in_dir8 <-"/data/project/layers/commons/Oregon_interpolation/output_data_365d_kriging_fss_lst_comb5_11052013" |
62 | 64 |
in_dir9 <- "/data/project/layers/commons/Oregon_interpolation/output_data_365d_gwr_fss_lst_comb5_11052013" |
63 |
# |
|
65 |
### |
|
66 |
|
|
67 |
### hold out 0-70 |
|
68 |
|
|
69 |
in_dir10 <-"/data/project/layers/commons/Oregon_interpolation/output_data_365d_gam_fss_lst_mults_0_70_comb5_11082013" |
|
70 |
in_dir11 <-"/data/project/layers/commons/Oregon_interpolation/output_data_365d_kriging_fss_lst_mults_0_70_comb5_11132013" |
|
71 |
in_dir12 <-"/data/project/layers/commons/Oregon_interpolation/output_data_365d_gwr_fss_lst_mults_0_70_comb5_11162013" |
|
72 |
in_dir13 <-"/data/project/layers/commons/Oregon_interpolation/output_data_365d_gam_cai_lst_mults_0_70_comb5_11192013" |
|
73 |
in_dir14 <-"/data/project/layers/commons/Oregon_interpolation/output_data_365d_kriging_cai_lst_mults_0_70_comb5_11272013" |
|
74 |
in_dir15 <-"/data/project/layers/commons/Oregon_interpolation/output_data_365d_gwr_cai_lst_mults_0_70_comb5_11222013" |
|
64 | 75 |
|
65 | 76 |
##raster_prediction object for comb5 |
66 | 77 |
#direct methods |
67 | 78 |
raster_obj_file_1 <- "raster_prediction_obj_gam_daily_dailyTmax_365d_gam_daily_lst_comb5_11012013.RData" |
68 | 79 |
raster_obj_file_2 <- "raster_prediction_obj_kriging_daily_dailyTmax_365d_kriging_daily_lst_comb5_11022013.RData" |
69 |
raster_obj_file_3 <- "raster_prediction_obj_gwr_daily_dailyTmax_365d_gwr_daily_lst_comb5p1_3_11062013.RData" |
|
70 |
raster_obj_file_3b <- "raster_prediction_obj_gwr_daily_dailyTmax_365d_gwr_daily_lst_comb5p1_3_11062013.RData"
|
|
80 |
raster_obj_file_3a <- "raster_prediction_obj_gwr_daily_dailyTmax_365d_gwr_daily_lst_comb5p1_3_11062013.RData"
|
|
81 |
raster_obj_file_3b <- "raster_prediction_obj_gwr_daily_dailyTmax_365d_gwr_daily_lst_comb5p4_7_11292013.RData"
|
|
71 | 82 |
#CAI |
72 | 83 |
raster_obj_file_4 <- "raster_prediction_obj_gam_CAI_dailyTmax_365d_gam_cai_lst_comb5_11032013.RData" |
73 | 84 |
raster_obj_file_5 <- "raster_prediction_obj_kriging_CAI_dailyTmax_365d_kriging_cai_lst_comb5_11032013.RData" |
... | ... | |
77 | 88 |
raster_obj_file_8 <- "raster_prediction_obj_kriging_fusion_dailyTmax_365d_kriging_fss_lst_comb5_11052013.RData" |
78 | 89 |
raster_obj_file_9 <- "raster_prediction_obj_gwr_fusion_dailyTmax_365d_gwr_fss_lst_comb5_11052013.RData" |
79 | 90 |
|
91 |
## holdout |
|
92 |
|
|
93 |
raster_obj_file_10 <- "raster_prediction_obj_gam_fusion_dailyTmax_365d_gam_fss_lst_mults_0_70_comb5_11082013.RData" |
|
94 |
raster_obj_file_11 <- "raster_prediction_obj_kriging_fusion_dailyTmax_365d_kriging_fss_lst_mults_0_70_comb5_11132013.RData" |
|
95 |
raster_obj_file_12 <- "raster_prediction_obj_gwr_fusion_dailyTmax_365d_gwr_fss_lst_mults_0_70_comb5_11162013.RData" |
|
96 |
raster_obj_file_13 <- "raster_prediction_obj_gam_CAI_dailyTmax_365d_gam_cai_lst_mults_0_70_comb5_11192013.RData" |
|
97 |
raster_obj_file_14 <- "raster_prediction_obj_kriging_CAI_dailyTmax_365d_kriging_cai_lst_mults_0_70_comb5_11272013.RData" |
|
98 |
raster_obj_file_15 <- "raster_prediction_obj_gwr_CAI_dailyTmax_365d_gwr_cai_lst_mults_0_70_comb5_11222013.RData" |
|
99 |
|
|
80 | 100 |
out_dir<-"/home/parmentier/Data/IPLANT_project/paper_multitime_scale__analyses_tables_fig_09032013" |
81 | 101 |
setwd(out_dir) |
82 | 102 |
|
... | ... | |
84 | 104 |
met_stations_outfiles_obj_file<-"/data/project/layers/commons/data_workflow/output_data_365d_gam_fus_lst_test_run_07172013/met_stations_outfiles_obj_gam_fusion__365d_gam_fus_lst_test_run_07172013.RData" |
85 | 105 |
CRS_locs_WGS84<-CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #Station coords WGS84 |
86 | 106 |
y_var_name <- "dailyTmax" |
87 |
out_prefix<-"analyses_11252013"
|
|
107 |
out_prefix<-"analyses_12022013"
|
|
88 | 108 |
ref_rast_name<- "/data/project/layers/commons/data_workflow/inputs/region_outlines_ref_files/mean_day244_rescaled.rst" #This is the shape file of outline of the study area. #local raster name defining resolution, exent, local projection--. set on the fly?? |
89 | 109 |
infile_reg_outline <- "/data/project/layers/commons/data_workflow/inputs/region_outlines_ref_files/OR83M_state_outline.shp" #input region outline defined by polygon: Oregon |
90 | 110 |
ref_rast_name <-"/data/project/layers/commons/data_workflow/inputs/region_outlines_ref_files/mean_day244_rescaled.rst" #local raster name defining resolution, exent: oregon |
... | ... | |
110 | 130 |
names(s_raster)<-covar_names |
111 | 131 |
|
112 | 132 |
#raster_prediction_obj_1 <-load_obj(file.path(in_dir1,raster_obj_file_1)) #comb5 gam_daily |
113 |
#raster_prediction_obj_2 <-load_obj(file.path(in_dir2,raster_obj_file_2)) #comb5 kriging_daily |
|
114 |
#raster_prediction_obj_3 <-load_obj(file.path(in_dir3,raster_obj_file_3)) #comb5 gwr_daily mod1 to mod3 |
|
115 |
#raster_prediction_obj_3b <-load_obj(file.path(in_dir3b,raster_obj_file_3b)) #comb5 gwr_daily mod4 to mod7 |
|
116 |
|
|
117 |
#raster_prediction_obj_4 <-load_obj(file.path(in_dir4,raster_obj_file_4)) #comb5 gam_CAI |
|
118 |
#raster_prediction_obj_5 <-load_obj(file.path(in_dir5,raster_obj_file_5)) #comb5 kriging_CAI |
|
119 |
#raster_prediction_obj_6 <-load_obj(file.path(in_dir6,raster_obj_file_6)) #comb5 gwr_CAI |
|
120 |
#raster_prediction_obj_7 <-load_obj(file.path(in_dir7,raster_obj_file_7)) #comb5 gam_fss |
|
121 |
#raster_prediction_obj_8 <-load_obj(file.path(in_dir8,raster_obj_file_8)) #comb5 kriging_fss |
|
122 |
#raster_prediction_obj_9 <-load_obj(file.path(in_dir9,raster_obj_file_9)) #comb5 gwr_fss |
|
123 | 133 |
|
124 | 134 |
############### BEGIN SCRIPT ################# |
125 | 135 |
|
... | ... | |
128 | 138 |
## This is a table of accuracy |
129 | 139 |
|
130 | 140 |
list_raster_obj_files <- list(file.path(in_dir1,raster_obj_file_1),file.path(in_dir2,raster_obj_file_2), |
131 |
file.path(in_dir3,raster_obj_file_3),file.path(in_dir4,raster_obj_file_4),
|
|
132 |
file.path(in_dir5,raster_obj_file_5),file.path(in_dir6,raster_obj_file_6),
|
|
133 |
file.path(in_dir7,raster_obj_file_7),file.path(in_dir8,raster_obj_file_8),
|
|
134 |
file.path(in_dir9,raster_obj_file_9)) |
|
141 |
file.path(in_dir3a,raster_obj_file_3a),file.path(in_dir3b,raster_obj_file_3b),
|
|
142 |
file.path(in_dir4,raster_obj_file_4),file.path(in_dir5,raster_obj_file_5),
|
|
143 |
file.path(in_dir6,raster_obj_file_6),file.path(in_dir7,raster_obj_file_7),
|
|
144 |
file.path(in_dir8,raster_obj_file_8),file.path(in_dir9,raster_obj_file_9))
|
|
135 | 145 |
|
136 |
names(list_raster_obj_files)<- c("gam_daily","kriging_daily","gwr_daily", |
|
146 |
names(list_raster_obj_files)<- c("gam_daily","kriging_daily","gwr_daily","gwr_daily",
|
|
137 | 147 |
"gam_CAI","kriging_CAI","gwr_CAI", |
138 | 148 |
"gam_fss","kriging_fss","gwr_fss") |
139 | 149 |
summary_metrics_v_list<-lapply(list_raster_obj_files,FUN=function(x){x<-load_obj(x);x[["summary_metrics_v"]]$avg$rmse}) |
... | ... | |
148 | 158 |
table_kriging <- do.call(cbind,table_kriging) |
149 | 159 |
table_kriging <- table_kriging[1:7,] |
150 | 160 |
|
151 |
#for kriging models
|
|
161 |
#for gwr models
|
|
152 | 162 |
table_gwr <- summary_metrics_v_list[grep("gwr",names(summary_metrics_v_list))] |
153 | 163 |
table_gwr <- do.call(cbind,table_gwr) |
154 | 164 |
table_gwr <- table_gwr[1:7,] |
... | ... | |
277 | 287 |
################################################ |
278 | 288 |
######### Figure 4. RMSE multi-timescale mulitple hold out for FSS and CAI |
279 | 289 |
|
290 |
raster_prediction_obj_9 <-load_obj(file.path(in_dir9,raster_obj_file_9)) #comb5 gwr_fss |
|
291 |
|
|
292 |
list_raster_obj_files_holdout <- list(file.path(in_dir10,raster_obj_file_10),file.path(in_dir11,raster_obj_file_11), |
|
293 |
file.path(in_dir12,raster_obj_file_12),file.path(in_dir13,raster_obj_file_13), |
|
294 |
file.path(in_dir14,raster_obj_file_14),file.path(in_dir15,raster_obj_file_15)) |
|
295 |
|
|
296 |
names(list_raster_obj_files_holdout)<- c("gam_fss","kriging_fss","gwr_fss", |
|
297 |
"gam_CAI","kriging_CAI","gwr_CAI") |
|
298 |
tb_v_list<-lapply(list_raster_obj_files_holdout,FUN=function(x){x<-load_obj(x);x[["tb_diagnostic_v"]]}) |
|
299 |
tb_s_list<-lapply(list_raster_obj_files_holdout,FUN=function(x){x<-load_obj(x);x[["tb_diagnostic_s"]]}) |
|
300 |
#tb_s_list<-mclapply(list_raster_obj_files_holdout,FUN=function(x){x<-load_obj(x);x[["tb_diagnostic_s"]]},mc.preschedule=FALSE,mc.cores = 6) |
|
301 |
#tb_v_list<-mclapply(list_raster_obj_files_holdout,FUN=function(x){x<-load_obj(x);x[["tb_diagnostic_v"]]},mc.preschedule=FALSE,mc.cores = 6) |
|
302 |
names(tb_s_list) <- paste("tb_s_",names(tb_s_list),sep="") |
|
303 |
names(tb_v_list) <- paste("tb_v_",names(tb_v_list),sep="") |
|
304 |
|
|
305 |
tb_mv_list<-lapply(list_raster_obj_files_holdout,FUN=function(x){x<-load_obj(x);x[["tb_month_diagnostic_mv"]]}) |
|
306 |
tb_ms_list<-lapply(list_raster_obj_files_holdout,FUN=function(x){x<-load_obj(x);x[["tb_month_diagnostic_ms"]]}) |
|
307 |
#tb_mv_list<-mclapply(list_raster_obj_files_holdout,FUN=function(x){x<-load_obj(x);x[["tb_month_diagnostic_v"]]},mc.preschedule=FALSE,mc.cores = 6) |
|
308 |
#tb_ms_list<-mclapply(list_raster_obj_files_holdout,FUN=function(x){x<-load_obj(x);x[["tb_month_diagnostic_s"]]},mc.preschedule=FALSE,mc.cores = 6) |
|
309 |
names(tb_ms_list) <- paste("tb_ms_",names(tb_ms_list),sep="") #monthly training accuracy |
|
310 |
names(tb_mv_list) <- paste("tb_mv_",names(tb_mv_list),sep="") #monthly testing accuracy |
|
311 |
|
|
312 |
list_tb <- c(tb_s_list,tb_v_list,tb_ms_list,tb_mv_list) #combined in one list |
|
313 |
ac_metric <- "rmse" |
|
314 |
#Quick function to explore accuracy make this a function to create solo figure...and run only a subset... |
|
315 |
plot_accuracy_by_holdout_fun <-function(list_tb,ac_metric){ |
|
316 |
# |
|
317 |
for(i in 1:length(list_tb)){ |
|
318 |
#i <- i+1 |
|
319 |
tb <-list_tb[[i]] |
|
320 |
plot_name <- names(list_tb)[i] |
|
321 |
pat_str <- "tb_m" |
|
322 |
if(substr(plot_name,start=1,stop=4)== pat_str){ |
|
323 |
names_id <- c("pred_mod","prop") |
|
324 |
plot_formula <- paste(ac_metric,"~prop",sep="",collapse="") |
|
325 |
}else{ |
|
326 |
names_id <- c("pred_mod","prop_month") |
|
327 |
plot_formula <- paste(ac_metric,"~prop_month",collapse="") |
|
328 |
} |
|
329 |
names_mod <-unique(tb$pred_mod) |
|
330 |
prop_obj <- calc_stat_prop_tb_diagnostic(names_mod,names_id,tb) |
|
331 |
avg_tb <- prop_obj$avg_tb |
|
332 |
|
|
333 |
layout_m<-c(1,1) #one row two columns |
|
334 |
par(mfrow=layout_m) |
|
335 |
|
|
336 |
png(paste("Figure__accuracy_",ac_metric,"_prop_month_",plot_name,"_",out_prefix,".png", sep=""), |
|
337 |
height=480*layout_m[1],width=480*layout_m[2]) |
|
338 |
|
|
339 |
p<- xyplot(as.formula(plot_formula),group=pred_mod,type="b", |
|
340 |
data=avg_tb, |
|
341 |
main=paste(ac_metric,plot_name,sep=" "), |
|
342 |
pch=1:length(avg_tb$pred_mod), |
|
343 |
par.settings=list(superpose.symbol = list( |
|
344 |
pch=1:length(avg_tb$pred_mod))), |
|
345 |
auto.key=list(columns=5)) |
|
346 |
print(p) |
|
347 |
|
|
348 |
dev.off() |
|
349 |
} |
|
350 |
#end of function |
|
351 |
} |
|
352 |
|
|
353 |
#For paper... |
|
354 |
#Combine figures... tb_v for GWR, Kriging and GAM for both FSS and CAI |
|
355 |
|
|
280 | 356 |
################################################ |
281 | 357 |
######### Figure 5. RMSE multi-timescale mulitple hold out Overtraining tendency |
282 |
|
|
358 |
|
|
359 |
#For paper... |
|
360 |
#Combine figures... tb_v for GWR, Kriging and GAM for both FSS and CAI |
|
361 |
|
|
362 |
##### Calculate differences |
|
363 |
|
|
364 |
metric_names <- c("mae","rmse","me","r") |
|
365 |
diff_kriging_CAI <- diff_df(list_tb[["tb_s_kriging_CAI"]],list_tb[["tb_v_kriging_CAI"]],metric_names) |
|
366 |
diff_gam_CAI <- diff_df(list_tb[["tb_s_gam_CAI"]][tb_s_gam_CAI$pred_mod!="mod_kr"],list_tb[["tb_v_gam_CAI"]],metric_names) |
|
367 |
diff_gwr_CAI <- diff_df(tb_s_gwr_CAI,tb_v_gwr_CAI,metric_names) |
|
368 |
|
|
369 |
layout_m<-c(1,1) #one row two columns |
|
370 |
par(mfrow=layout_m) |
|
371 |
|
|
372 |
png(paste("Figure__accuracy_rmse_prop_month_",plot_name,out_suffix,".png", sep=""), |
|
373 |
height=480*layout_m[1],width=480*layout_m[2]) |
|
374 |
boxplot(diff_kriging_CAI$rmse,diff_gam_CAI$rmse,diff_gwr_CAI$rmse,names=c("kriging_CAI","gam_CAI","gwr_CAI"), |
|
375 |
main="Difference between training and testing daily rmse") |
|
376 |
dev.off() |
|
377 |
|
|
378 |
#remove prop 0, |
|
379 |
diff_kriging_CAI <- diff_df(tb_s_kriging_CAI[tb_s_kriging_CAI$prop_month!=0,],tb_v_kriging_CAI[tb_v_kriging_CAI$prop_month!=0,],metric_names) |
|
380 |
diff_gam_CAI <- diff_df(tb_s_gam_CAI[tb_s_gam_CAI$prop_month!=0,],tb_v_gam_CAI[tb_v_gam_CAI$prop_month!=0,],metric_names) |
|
381 |
diff_gwr_CAI <- diff_df(tb_s_gwr_CAI[tb_s_gwr_CAI$prop_month!=0,],tb_v_gwr_CAI[tb_v_gwr_CAI$prop_month!=0,],metric_names) |
|
382 |
boxplot(diff_kriging_CAI$rmse,diff_gam_CAI$rmse,diff_gwr_CAI$rmse,names=c("kriging_CAI","gam_CAI","gwr_CAI"), |
|
383 |
main="Difference between training and testing daily rmse") |
|
384 |
|
|
385 |
#now monthly accuracy: use mapply and provide a list of of inputs... |
|
386 |
metric_names <- c("mae","rmse","me","r") |
|
387 |
diff_kriging_m_CAI <- diff_df(tb_ms_kriging_CAI[tb_ms_kriging_CAI$prop!=0,],tb_mv_kriging_CAI,metric_names) |
|
388 |
diff_gam_m_CAI <- diff_df(tb_ms_gam_CAI[tb_ms_gam_CAI$prop!=0,],tb_mv_gam_CAI,metric_names) |
|
389 |
diff_gwr_m_CAI <- diff_df(tb_ms_gwr_CAI[tb_ms_gwr_CAI$prop!=0,],tb_mv_gwr_CAI,metric_names) |
|
390 |
|
|
391 |
layout_m<-c(1,1) #one row two columns |
|
392 |
par(mfrow=layout_m) |
|
393 |
|
|
394 |
png(paste("Figure__accuracy_rmse_prop_month_",plot_name,out_suffix,".png", sep=""), |
|
395 |
height=480*layout_m[1],width=480*layout_m[2]) |
|
396 |
boxplot(diff_kriging_m_CAI$rmse,diff_gam_m_CAI$rmse,diff_gwr_m_CAI$rmse,names=c("kriging_CAI","gam_CAI","gwr_CAI"), |
|
397 |
main="Difference between training and monhtly testing rmse") |
|
398 |
dev.off() |
|
399 |
|
|
400 |
#boxplot(diff_kriging_m_CAI$rmse,diff_gam_m_CAI$rmse,diff_gwr_CAI,names=c("kriging_CAI","gam_CAI","gwr_CAI"), |
|
401 |
# main="Difference between training and monhtly testing rmse") |
|
402 |
|
|
403 |
### For fusion |
|
404 |
|
|
405 |
metric_names <- c("mae","rmse","me","r") |
|
406 |
diff_kriging_fus <- diff_df(tb_s_kriging_fus,tb_v_kriging_fus,metric_names) |
|
407 |
diff_gam_fus <- diff_df(tb_s_gam_fus,tb_v_gam_fus,metric_names) |
|
408 |
diff_gwr_fus <- diff_df(tb_s_gwr_fus,tb_v_gwr_fus,metric_names) |
|
409 |
|
|
410 |
layout_m<-c(1,1) #one row two columns |
|
411 |
par(mfrow=layout_m) |
|
412 |
|
|
413 |
png(paste("Figure__accuracy_rmse_prop_month_",plot_name,out_suffix,".png", sep=""), |
|
414 |
height=480*layout_m[1],width=480*layout_m[2]) |
|
415 |
boxplot(diff_kriging_fus$rmse,diff_gam_fus$rmse,diff_gwr_fus$rmse,names=c("kriging_fus","gam_fus","gwr_fus"), |
|
416 |
main="Difference between training and testing daily rmse") |
|
417 |
dev.off() |
|
418 |
|
|
419 |
metric_names <- c("mae","rmse","me","r") |
|
420 |
diff_kriging_m_fus <- diff_df(tb_ms_kriging_fus[tb_ms_kriging_fus$prop!=0,],tb_mv_kriging_fus[tb_mv_kriging_fus$prop!=0,],metric_names) |
|
421 |
diff_gam_m_fus <- diff_df(tb_ms_gam_fus[tb_ms_gam_fus$prop!=0,],tb_mv_gam_fus[tb_mv_gam_fus$prop!=0,],metric_names) |
|
422 |
diff_gwr_m_fus <- diff_df(tb_ms_gwr_fus[tb_ms_gwr_fus$prop!=0,],tb_mv_gwr_fus[tb_mv_gwr_fus$prop!=0,],metric_names) |
|
423 |
|
|
424 |
layout_m<-c(1,1) #one row two columns |
|
425 |
par(mfrow=layout_m) |
|
426 |
|
|
427 |
png(paste("Figure__accuracy_rmse_prop_month_",plot_name,out_suffix,".png", sep=""), |
|
428 |
height=480*layout_m[1],width=480*layout_m[2]) |
|
429 |
boxplot(diff_kriging_m_fus$rmse,diff_gam_m_fus$rmse,diff_gwr_m_fus$rmse, names=c("kriging_fus","gam_fus","gwr_fus"), |
|
430 |
main="Difference between training and testing FUS rmse") |
|
431 |
dev.off() |
|
432 |
|
|
283 | 433 |
################################################ |
284 | 434 |
######### Figure 6: Spatial pattern of prediction for one day (maps) |
285 | 435 |
|
... | ... | |
402 | 552 |
#title_plot2 |
403 | 553 |
#rast_pred2 |
404 | 554 |
#debug(plot_transect_m2) |
405 |
trans_data2<-plot_transect_m2(list_transect2,rast_pred2,title_plot2,disp=FALSE,m_layers_sc) |
|
406 |
trans_data3<-plot_transect_m2(list_transect3,rast_pred3,title_plot3,disp=FALSE,m_layers_sc) |
|
555 |
trans_data2 <-plot_transect_m2(list_transect2,rast_pred2,title_plot2,disp=FALSE,m_layers_sc)
|
|
556 |
trans_data3 <-plot_transect_m2(list_transect3,rast_pred3,title_plot3,disp=FALSE,m_layers_sc)
|
|
407 | 557 |
|
408 | 558 |
################################################ |
559 |
|
|
409 | 560 |
#Figure 9: Image differencing and land cover |
410 | 561 |
#Do for january and September... |
411 | 562 |
png(paste("Fig9_image_difference_",date_selected,out_prefix,".png", sep=""), |
Also available in: Unified diff
multi timescale script update, monthly holdout accuracy and figures production