Project

General

Profile

« Previous | Next » 

Revision b24654b2

Added by Benoit Parmentier over 8 years ago

scaling assessment part3, functions to combine yearly assessment used in stage 8

View differences:

climate/research/oregon/interpolation/global_run_scalingup_assessment_part3.R
196 196
  ###Table 1: Average accuracy metrics
197 197
  ###Table 2: daily accuracy metrics for all tiles
198 198

  
199
  in_dir_list <- as.list(read.table(in_dir_list_filename,stringsAsFactors=F)[,1])
200
  
199
  if(!is.null(in_dir_list_filename)){
200
    in_dir_list <- as.list(read.table(in_dir_list_filename,stringsAsFactors=F)[,1])
201
  }else{
202
    pattern_str <- paste0("^output_",region_name,".*.")
203
    in_dir_list_all <- list.dirs(path=in_dir,recursive = T)
204
    in_dir_list <- in_dir_list_all[grep(pattern_str,basename(in_dir_list_all),invert=FALSE)] #select directory with shapefiles...
205
    #in_dir_shp <- file.path(in_dir_list_all,"shapefiles")
206
  }
207
  #pattern_str <- file.path(in_dir,paste0("output_",region_name,".*."))
208
  #test <- Sys.glob(pattern_str,FALSE)
209
  #  searchStr = paste(in_dir_tiles_tmp,"/*/",year_processed,"/gam_CAI_dailyTmax_predicted_",pred_mod_name,"*",day_to_mosaic[i],"*.tif",sep="")
210
  #  #print(searchStr)
211
  #  Sys.glob(searchStr)})
212

  
213
  #lf_mosaic <- lapply(1:length(day_to_mosaic),FUN=function(i){
214
  #  searchStr = paste(in_dir_tiles_tmp,"/*/",year_processed,"/gam_CAI_dailyTmax_predicted_",pred_mod_name,"*",day_to_mosaic[i],"*.tif",sep="")
215
  #  #print(searchStr)
216
  #  Sys.glob(searchStr)})
217

  
201 218
  ##Read in data list from in_dir_list
202
  list_tb_fname <- list.files(path=file.path(in_dir,in_dir_list),"tb_diagnostic_v_NA_.*.txt",full.names=T)
203
  list_df_fname <- list.files(path=file.path(in_dir,in_dir_list),"df_tile_processed_.*..txt",full.names=T)
204
  list_summary_metrics_v_fname <- list.files(path=file.path(in_dir,in_dir_list),"summary_metrics_v2_NA_.*.txt",full.names=T)
205
  list_tb_s_fname <- list.files(path=file.path(in_dir,in_dir_list),"tb_diagnostic_s_NA.*.txt",full.names=T)
206
  list_tb_month_s_fname <- list.files(path=file.path(in_dir,in_dir_list),"tb_month_diagnostic_s.*.txt",full.names=T)
207
  list_data_month_s_fname <- list.files(path=file.path(in_dir,in_dir_list),"data_month_s.*.txt",full.names=T)
208
  list_data_s_fname <- list.files(path=file.path(in_dir,in_dir_list),"data_day_s.*.txt",full.names=T)
209
  list_data_v_fname <- list.files(path=file.path(in_dir,in_dir_list),"data_day_v.*.txt",full.names=T)
210
  list_pred_data_month_info_fname <- list.files(path=file.path(in_dir,in_dir_list),"pred_data_month_info.*.txt",full.names=T)
211
  list_pred_data_day_info_fname <- list.files(path=file.path(in_dir,in_dir_list),"pred_data_day_info.*.txt",full.names=T)
219
  #list_tb_fname <- list.files(path=file.path(in_dir,in_dir_list),"tb_diagnostic_v_NA_.*.txt",full.names=T)
220
  #list_df_fname <- list.files(path=file.path(in_dir,in_dir_list),"df_tile_processed_.*..txt",full.names=T)
221
  #list_summary_metrics_v_fname <- list.files(path=file.path(in_dir,in_dir_list),"summary_metrics_v2_NA_.*.txt",full.names=T)
222
  #list_tb_s_fname <- list.files(path=file.path(in_dir,in_dir_list),"tb_diagnostic_s_NA.*.txt",full.names=T)
223
  #list_tb_month_s_fname <- list.files(path=file.path(in_dir,in_dir_list),"tb_month_diagnostic_s.*.txt",full.names=T)
224
  #list_data_month_s_fname <- list.files(path=file.path(in_dir,in_dir_list),"data_month_s.*.txt",full.names=T)
225
  #list_data_s_fname <- list.files(path=file.path(in_dir,in_dir_list),"data_day_s.*.txt",full.names=T)
226
  #list_data_v_fname <- list.files(path=file.path(in_dir,in_dir_list),"data_day_v.*.txt",full.names=T)
227
  #list_pred_data_month_info_fname <- list.files(path=file.path(in_dir,in_dir_list),"pred_data_month_info.*.txt",full.names=T)
228
  #list_pred_data_day_info_fname <- list.files(path=file.path(in_dir,in_dir_list),"pred_data_day_info.*.txt",full.names=T)
229
  
230
  list_tb_fname <- list.files(path=in_dir_list,"tb_diagnostic_v_NA_.*.txt",full.names=T)
231
  list_df_fname <- list.files(path=in_dir_list,"df_tile_processed_.*..txt",full.names=T)
232
  list_summary_metrics_v_fname <- list.files(path=in_dir_list,"summary_metrics_v2_NA_.*.txt",full.names=T)
233
  list_tb_s_fname <- list.files(path=in_dir_list,"tb_diagnostic_s_NA.*.txt",full.names=T)
234
  list_tb_month_s_fname <- list.files(path=in_dir_list,"tb_month_diagnostic_s.*.txt",full.names=T)
235
  list_data_month_s_fname <- list.files(path=in_dir_list,"data_month_s.*.txt",full.names=T)
236
  list_data_s_fname <- list.files(path=in_dir_list,"data_day_s.*.txt",full.names=T)
237
  list_data_v_fname <- list.files(path=in_dir_list,"data_day_v.*.txt",full.names=T)
238
  list_pred_data_month_info_fname <- list.files(path=in_dir_list,"pred_data_month_info.*.txt",full.names=T)
239
  list_pred_data_day_info_fname <- list.files(path=in_dir_list,"pred_data_day_info.*.txt",full.names=T)
212 240
  
213 241
  #need to fix this !! has all of the files in one list (for a region)
214 242
  #list_shp <- list.files(path=file.path(in_dir,file.path(in_dir_list,"shapefiles")),"*.shp",full.names=T)
......
219 247
  list_tb_s <- lapply(list_tb_s_fname,function(x){read.table(x,stringsAsFactors=F,sep=",")})
220 248
  tb_s <- do.call(rbind,list_tb_s)
221 249
  
250
  #summary_metrics_v_list <- mclapply(list_raster_obj_files,FUN=function(x){try( x<- load_obj(x)); try(x[["summary_metrics_v"]]$avg)},mc.preschedule=FALSE,mc.cores = num_cores)                         
251

  
222 252
  list_df_tile_processed <- lapply(list_df_fname,function(x){read.table(x,stringsAsFactors=F,sep=",")})
223 253
  df_tile_processed <- do.call(rbind,list_df_tile_processed)  
224 254
  list_summary_metrics_v <- lapply(list_summary_metrics_v_fname,function(x){read.table(x,stringsAsFactors=F,sep=",")})
......
246 276
  #multiple regions? #this needs to be included in the previous script!!!
247 277
  #if(multiple_region==TRUE){
248 278
  df_tile_processed$reg <- as.character(df_tile_processed$reg)
279
  #1.05pm... very slow
249 280
  tb <- merge(tb,df_tile_processed,by="tile_id")
250 281
  tb_s <- merge(tb_s,df_tile_processed,by="tile_id")
251 282
  tb_month_s<- merge(tb_month_s,df_tile_processed,by="tile_id")

Also available in: Unified diff