Revision b4057554
Added by Benoit Parmentier almost 9 years ago
climate/research/oregon/interpolation/master_script_stage_7.R | ||
---|---|---|
30 | 30 |
################################################################################################## |
31 | 31 |
|
32 | 32 |
### PARAMETERS DEFINED IN THE SCRIPT |
33 |
#There are 21 parameters, 1 constant and 8 arguments (drawn from the parameters) for the Rscript call. |
|
34 |
#The arguments are passed directly from Rscript: |
|
35 |
#var <- args[1] # variable being interpolated #param 1, arg 1 |
|
36 |
#in_dir1 <- args[2] # This is the output directory containing global prediction e.g./nobackupp6/aguzman4/climateLayers/out/ param 5, arg 2 |
|
37 |
#region_name <- args[3] # region e.g. "reg4" param 6, arg 3 |
|
38 |
#out_prefix <- args[4] # this is used in creating an output directory,include region name? param 7, arg 4 |
|
39 |
#out_dir <- args[5] # output parent dir, can be home dir or other, param 8, arg 5) |
|
40 |
#create_out_dir_param <- args[6] # if TRUE create a output from "output"+out_prefix param 9, arg 6 |
|
41 |
#list_year_predicted <- args[7] # enter as list but currently runs on the first element of the list, param 10, arg 7 |
|
42 |
#num_cores <- args[8] #number of cores used # param 13, arg 8 |
|
43 |
#max_mem <- args[9] # maximum memory, param 21 |
|
33 |
|
|
44 | 34 |
|
45 | 35 |
###Loading R library and packages ou |
46 | 36 |
library(RPostgreSQL) |
... | ... | |
73 | 63 |
|
74 | 64 |
#script_path <- "/home/parmentier/Data/IPLANT_project/env_layers_scripts" |
75 | 65 |
script_path <- "/nobackupp8/bparmen1/env_layers_scripts" #path to script |
76 |
function_mosaicing_functions <- "global_run_scalingup_mosaicing_function_04112016.R" #PARAM12
|
|
77 |
function_mosaicing <-"global_run_scalingup_mosaicing_04102016.R"
|
|
66 |
function_mosaicing_functions <- "global_run_scalingup_mosaicing_function_04102016.R" #PARAM12
|
|
67 |
function_mosaicing <-"global_run_scalingup_mosaicing_04112016.R"
|
|
78 | 68 |
source(file.path(script_path,function_mosaicing)) #source all functions used in this script |
79 | 69 |
source(file.path(script_path,function_mosaicing_functions)) #source all functions used in this script |
80 | 70 |
|
... | ... | |
99 | 89 |
#Data is on ATLAS or NASA NEX |
100 | 90 |
|
101 | 91 |
### PARAMETERS DEFINED IN THE SCRIPT |
102 |
#There are 21 parameters, 1 constant and 8 arguments (drawn from the parameters) for the Rscript call.
|
|
92 |
#There are 31 parameters, 1 constant and 17 arguments (drawn from the parameters) for the Rscript call.
|
|
103 | 93 |
#The arguments are passed directly from Rscript: |
104 | 94 |
#var <- args[1] # variable being interpolated #param 1, arg 1 |
105 | 95 |
#in_dir <- args[2] # This is the output directory containing global prediction e.g./nobackupp6/aguzman4/climateLayers/out/ param 5, arg 2 |
106 |
#region_name <- args[3] # region e.g. "reg4" param 6, arg 3
|
|
96 |
#region_name <- args[3] # region e.g. "reg4" param 3, arg 3
|
|
107 | 97 |
#out_suffix <- args[4] # formely out_prefix, this is used in creating an output directory, it is suggested to use "reg4" or same as region_name |
108 |
#out_dir <- args[5] # output parent dir, can be home dir or other, param 8, arg 5 |
|
109 |
#create_out_dir_param <- args[6] # if TRUE create a output from "output"+out_prefix param 9, arg 6 |
|
110 |
#year_predicted <- args[7] # enter as list but currently runs on the first element of the list, param 10, arg 7 |
|
111 |
#num_cores <- args[8] #number of cores used # param 13, arg 8 |
|
112 |
#max_mem <- args[9] # maximum memory, param 21 |
|
113 |
#mosaicing_method <- arg[10] #PARAM5 |
|
114 |
#metric_name <- arg[11] #"rmse" #RMSE, MAE etc. #PARAM 8 |
|
115 |
#day_to_mosaic_range <- arg[12] #c("19910101","19910103") #if null run all year |
|
116 |
#infile_mask <- arg[12] # "/nobackupp8/bparmen1/NEX_data/regions_input_files/r_mask_reg4.tif" |
|
117 |
#df_assessment_files_name <- arg[13] #"/nobackupp6/aguzman4/climateLayers/out/reg4/assessment/output_reg4_1991/df_assessment_files_reg4_1991_reg4_1991.txt" # data.frame with all files used in assessmnet, PARAM 21 |
|
118 |
#algorithm <- arg[14] #"python" #PARAM 28 #if R use mosaic function for R, if python use modified gdalmerge script from Alberto Guzmann |
|
119 |
#layers_option <- arg[15] #c("var_pred") #options are: |
|
120 |
#res_training, res_testing,ac_training, ac_testing, var_pred |
|
121 |
#tmp_files <- arg[16] #FALSE |
|
122 |
|
|
123 |
#mosaicing_method <- c("unweighted","use_edge_weights") #PARAM5 |
|
124 |
#metric_name <- "rmse" #RMSE, MAE etc. #PARAM 8 |
|
125 |
#day_to_mosaic_range <- c("19910101","19910103") #if null run all year |
|
126 |
#infile_mask <- "/nobackupp8/bparmen1/NEX_data/regions_input_files/r_mask_reg4.tif" |
|
127 |
#df_assessment_files_name <- "/nobackupp6/aguzman4/climateLayers/out/reg4/assessment/output_reg4_1991/df_assessment_files_reg4_1991_reg4_1991.txt" # data.frame with all files used in assessmnet, PARAM 21 |
|
128 |
#algorithm <- "python" #PARAM 28 #if R use mosaic function for R, if python use modified gdalmerge script from Alberto Guzmann |
|
129 |
#layers_option <- c("var_pred") #options are: |
|
130 |
#res_training, res_testing,ac_training, ac_testing, var_pred |
|
131 |
#tmp_files <- FALSE |
|
98 |
#out_dir <- args[5] # output parent dir, can be home dir or other, param 5, arg 5 |
|
99 |
#create_out_dir_param <- args[6] # if TRUE create a output from "output"+out_prefix param 6, arg 6 |
|
100 |
#year_predicted <- args[7] # enter as list but currently runs on the first element of the list, param 7, arg 7 |
|
101 |
#num_cores <- args[8] #number of cores used # param 8, arg 8 |
|
102 |
#max_mem <- args[9] # maximum memory, param 9 |
|
103 |
#mosaicing_method <- arg[10] #PARAM10 |
|
104 |
#metric_name <- arg[11] #"rmse" #RMSE, MAE etc. #PARAM 11 |
|
105 |
#day_to_mosaic_range <- arg[12] #c("19910101","19910103") #if null run all year, param 12 |
|
106 |
#infile_mask <- arg[13] # "/nobackupp8/bparmen1/NEX_data/regions_input_files/r_mask_reg4.tif" |
|
107 |
#df_assessment_files_name <- arg[14] #"/nobackupp6/aguzman4/climateLayers/out/reg4/assessment/output_reg4_1991/df_assessment_files_reg4_1991_reg4_1991.txt" # data.frame with all files used in assessmnet, PARAM 21 |
|
108 |
#algorithm <- arg[15] #"python" #PARAM 28 #if R use mosaic function for R, if python use modified gdalmerge script from Alberto Guzmann |
|
109 |
#layers_option <- arg[16] #c("var_pred") #options are:res_training, res_testing,ac_training, ac_testing, var_pred |
|
110 |
#tmp_files <- arg[17] #FALSE |
|
111 |
|
|
112 |
### Use the following values to run code from the shell: |
|
113 |
#var<-"TMAX" # variable being interpolated #param 1, arg 1 |
|
114 |
#in_dir <- "/nobackupp6/aguzman4/climateLayers/out/" #PARAM2,arg 2 |
|
115 |
#region_name <- "reg4" #PARAM 3, arg 3 #reg4 South America, Africa reg5,Europe reg2, North America reg1, Asia reg3 |
|
116 |
#out_suffix <- "reg4" #PARAM 4, arg 4 |
|
117 |
#out_dir <- "/nobackupp8/bparmen1/climateLayers/out/reg4" #PARAM 5,arg 5 use this location for now |
|
118 |
#create_out_dir_param <- TRUE #PARAM 6, arg 6 |
|
119 |
#year_predicted <- 1991 #PARAM 7, arg 7 |
|
120 |
#num_cores <- 6 #PARAM 8, arg 8 |
|
121 |
#max_mem = 1e+07 #param 9, arg 9 |
|
122 |
#mosaicing_method <- use_edge_weights" #PARAM10, arg 10 |
|
123 |
#metric_name <- "rmse" #RMSE, MAE etc. #PARAM 11, arg 11 |
|
124 |
#day_start <- "19910101" #PARAM 12 |
|
125 |
#day_end <- "19910101" #PARAM 13 |
|
126 |
#infile_mask <- "/nobackupp8/bparmen1/NEX_data/regions_input_files/r_mask_reg4.tif" #PARAM 14, arg 14 |
|
127 |
#df_assessment_files_name <- "/nobackupp6/aguzman4/climateLayers/out/reg4/assessment/output_reg4_1991/df_assessment_files_reg4_1991_reg4_1991.txt" # data.frame with all files used in assessmnet, PARAM 15 |
|
128 |
#algorithm <- "python" #PARAM 16 #if R use mosaic function for R, if python use modified gdalmerge script from Alberto Guzmann |
|
129 |
#layers_option <- c("var_pred") #arg 17 ,param 17, options are:#res_training, res_testing,ac_training, ac_testing, var_pred |
|
130 |
#tmp_files <- FALSE #arg 18, param 18 |
|
131 |
|
|
132 |
#path_assessment <- NOT USED "/nobackupp6/aguzman4/climateLayers/out/reg4/assessment/output_reg4_1991" #PARAM 14a, arg 14 |
|
133 |
|
|
134 |
### Testing several years on the bridge before running jobs on nodes with qsub |
|
135 |
#Use the following command to run as script via the shell on the bridge |
|
136 |
#Rscript /nobackupp8/bparmen1/env_layers_scripts/master_script_stage_7_04112016.R TMAX /nobackupp6/aguzman4/climateLayers/out/ reg4 reg4 /nobackupp8/bparmen1/climateLayers/out/reg4 TRUE 1991 6 1e+07 use_edge_weights rmse 19910101 19910103 /nobackupp8/bparmen1/NEX_data/regions_input_files/r_mask_reg4.tif /nobackupp6/aguzman4/climateLayers/out/reg4/assessment/output_reg4_1991/df_assessment_files_reg4_1991_reg4_1991.txt python var_pred FALSE |
|
137 |
|
|
138 |
############################ |
|
132 | 139 |
|
133 | 140 |
var <- args[1] # variable being interpolated #param 1, arg 1 |
134 |
var<-"TMAX" # variable being interpolated #param 1, arg 1 |
|
135 |
|
|
136 |
var<-"TMAX" # variable being interpolated |
|
137 |
if (var == "TMAX") { |
|
138 |
y_var_name <- "dailyTmax" |
|
139 |
y_var_month <- "TMax" |
|
140 |
} |
|
141 |
if (var == "TMIN") { |
|
142 |
y_var_name <- "dailyTmin" |
|
143 |
y_var_month <- "TMin" |
|
144 |
} |
|
141 |
#var<-"TMAX" # variable being interpolated #param 1, arg 1 |
|
145 | 142 |
|
146 | 143 |
#PARAM 2 |
147 | 144 |
#in_dir <- "/data/project/layers/commons/NEX_data/output_run10_1500x4500_global_analyses_pred_1992_12072015" #NCEAS |
148 | 145 |
#in_dir <- "/nobackupp8/bparmen1/output_run10_1500x4500_global_analyses_pred_1992_12072015" #NEX |
146 |
#in_dir <- "/nobackupp6/aguzman4/climateLayers/out/" #PARAM2 |
|
147 |
in_dir <- args[2] #PARAM2 |
|
149 | 148 |
|
150 |
in_dir <- "/nobackupp6/aguzman4/climateLayers/out/" |
|
151 |
in_dir <- args[2] |
|
152 |
interpolation_method <- c("gam_CAI") #PARAM3 |
|
153 |
|
|
154 |
|
|
155 |
#var <- args[1] # variable being interpolated #param 1, arg 1 |
|
156 |
#in_dir <- args[2] # This is the output directory containing global prediction e.g./nobackupp6/aguzman4/climateLayers/out/ param 5, arg 2 |
|
157 |
#region_name <- args[3] # region e.g. "reg4" param 6, arg 3 |
|
158 |
#out_suffix <- args[4] # formely out_prefix, this is used in creating an output directory, it is suggested to use "reg4" or same as region_name |
|
159 |
#out_dir <- args[5] # output parent dir, can be home dir or other, param 8, arg 5 |
|
160 |
#create_out_dir_param <- args[6] # if TRUE create a output from "output"+out_prefix param 9, arg 6 |
|
161 |
#year_predicted <- args[7] # enter as list but currently runs on the first element of the list, param 10, arg 7 |
|
162 |
#num_cores <- args[8] #number of cores used # param 13, arg 8 |
|
163 |
#max_mem <- args[9] # maximum memory, param 21 |
|
164 |
#mosaicing_method <- args[10] #PARAM5 |
|
165 |
#metric_name <- args[11] #"rmse" #RMSE, MAE etc. #PARAM 8 |
|
166 |
#day_to_mosaic_range <- arg[12] #c("19910101","19910103") #if null run all year |
|
167 |
#infile_mask <- args[13] # "/nobackupp8/bparmen1/NEX_data/regions_input_files/r_mask_reg4.tif" |
|
168 |
#df_assessment_files_name <- args[14] #"/nobackupp6/aguzman4/climateLayers/out/reg4/assessment/output_reg4_1991/df_assessment_files_reg4_1991_reg4_1991.txt" # data.frame with all files used in assessmnet, PARAM 21 |
|
169 |
#algorithm <- args[15] #"python" #PARAM 28 #if R use mosaic function for R, if python use modified gdalmerge script from Alberto Guzmann |
|
170 |
#layers_option <- args[16] #c("var_pred") #options are: |
|
171 |
#res_training, res_testing,ac_training, ac_testing, var_pred |
|
172 |
#tmp_files <- args[17] #FALSE |
|
173 |
|
|
174 |
region_name <- args[3] |
|
175 |
region_name <- "reg4" #PARAM 4 #reg4 South America, Africa reg5,Europe reg2, North America reg1, Asia reg3 |
|
149 |
region_name <- args[3] #PARAM3 |
|
150 |
#region_name <- "reg4" #PARAM 3 #reg4 South America, Africa reg5,Europe reg2, North America reg1, Asia reg3 |
|
176 | 151 |
|
177 | 152 |
#out_suffix <- paste(region_name,"_","run10_1500x4500_global_analyses_pred_1991_04052016",sep="") #PARAM 6 |
178 | 153 |
#out_suffix_str <- "run10_1500x4500_global_analyses_pred_1991_04052016" #PARAM 7 |
179 | 154 |
|
180 |
out_suffix <- args[4] |
|
181 |
out_suffix <- region_name #PARAM 6 |
|
182 |
out_suffix_str <- region_name #PARAM 7 |
|
183 |
#out_dir <- in_dir #PARAM 11 |
|
184 |
out_dir <- args[5] |
|
185 |
out_dir <- "/nobackupp8/bparmen1/climateLayers/out/reg4" #PARAM 11, use this location for now |
|
186 |
create_out_dir_param <- args[6] |
|
187 |
create_out_dir_param <- TRUE #PARAM 12 |
|
155 |
out_suffix <- args[4] #PARAM 4 |
|
156 |
#out_suffix <- region_name #PARAM 4 |
|
157 |
out_suffix_str <- region_name #PARAM 4 |
|
158 |
out_dir <- args[5] #PARAM 5 |
|
159 |
#out_dir <- "/nobackupp8/bparmen1/climateLayers/out/reg4" #PARAM 5, use this location for now |
|
160 |
create_out_dir_param <- args[6] #PARAM 6 |
|
161 |
#create_out_dir_param <- TRUE #PARAM 6 |
|
188 | 162 |
|
189 |
year_predicted <- args[7] |
|
190 |
year_predicted <- 1991 #PARAM 31
|
|
163 |
year_predicted <- args[7] #PARAM 7
|
|
164 |
#year_predicted <- 1991 #PARAM 7
|
|
191 | 165 |
|
192 |
num_cores <- args[8] |
|
193 |
num_cores <- 6 #PARAM 17
|
|
166 |
num_cores <- args[8] #PARAM 8
|
|
167 |
#num_cores <- 6 #PARAM 8
|
|
194 | 168 |
|
195 | 169 |
#max number of cells to read in memory |
196 |
max_mem<-args[9] |
|
170 |
max_mem<-args[9] #PARAM 9
|
|
197 | 171 |
|
198 |
mosaicing_method <- c("unweighted","use_edge_weights") #PARAM5
|
|
199 |
mosaicing_method <- args[10] |
|
172 |
#mosaicing_method <- c("unweighted","use_edge_weights") #PARAM10
|
|
173 |
mosaicing_method <- args[10] #PARAM10
|
|
200 | 174 |
|
201 | 175 |
metric_name <- args[11] |
202 |
metric_name <- "rmse" #RMSE, MAE etc. #PARAM 8 |
|
203 |
#if daily mosaics NULL then mosaicas all days of the year #PARAM 13 |
|
204 |
#day_to_mosaic <- c("19910101","19910102","19910103") #,"19920104","19920105") #PARAM9, two dates note in /tiles for now on NEX |
|
205 |
day_to_mosaic_range <- c("19910101","19910103") #if null run all year |
|
206 |
day_to_mosaic_range <- c("19910101","19910101") #if null run all year |
|
207 |
day_to_mosaic_range <- args[12] |
|
208 |
|
|
209 |
###Separate folder for masks by regions, should be listed as just the dir!!... #PARAM 20 |
|
210 |
infile_mask <- "/nobackupp8/bparmen1/NEX_data/regions_input_files/r_mask_reg4.tif" |
|
211 |
inflie_mask <- args[13] |
|
176 |
#metric_name <- "rmse" #RMSE, MAE etc. #PARAM 11 |
|
177 |
#if daily mosaics NULL then mosaicas all days of the year #PARAM 12 |
|
178 |
#day_to_mosaic_range <- c("19910101","19910103") #if null run all year #PARAM 12 |
|
179 |
#day_to_mosaic_range <- c("19910101","19910101") #if null run all year #PARAM 12 |
|
180 |
#day_to_mosaic_range <- args[12] #PARAM 12 |
|
181 |
day_start <- args[12] #PARAM 12 |
|
182 |
day_end <- args[13] #PARAM 13 |
|
183 |
|
|
184 |
###Separate folder for masks by regions, should be listed as just the dir!!... #PARAM 14 |
|
185 |
#infile_mask <- "/nobackupp8/bparmen1/NEX_data/regions_input_files/r_mask_reg4.tif" #PARAM 14 |
|
186 |
infile_mask <- args[14] |
|
212 | 187 |
#infile_mask <- "/data/project/layers/commons/NEX_data/regions_input_files/r_mask_reg4.tif" |
213 | 188 |
## All of this is interesting so use df_assessment!! |
214 | 189 |
|
215 | 190 |
#path_assessment <- "/nobackupp6/aguzman4/climateLayers/out/reg4/assessment/output_reg4_1991" |
216 | 191 |
#path_assessment <- file.path(in_dir,region_name,"assessment",paste("output_",region_name,year_processed,sep="")) |
217 |
df_assessment_files_name <- args[14] |
|
218 |
df_assessment_files_name <- "/nobackupp6/aguzman4/climateLayers/out/reg4/assessment/output_reg4_1991/df_assessment_files_reg4_1991_reg4_1991.txt" # data.frame with all files used in assessmnet, PARAM 21 |
|
219 |
algorithm <- args[15] |
|
220 |
algorithm <- "python" #PARAM 28 #if R use mosaic function for R, if python use modified gdalmerge script from Alberto Guzmann |
|
192 |
|
|
193 |
df_assessment_files_name <- args[15] #PARAM 15 |
|
194 |
#df_assessment_files_name <- "/nobackupp6/aguzman4/climateLayers/out/reg4/assessment/output_reg4_1991/df_assessment_files_reg4_1991_reg4_1991.txt" # data.frame with all files used in assessmnet, PARAM 14 |
|
195 |
algorithm <- args[16] #PARAM 16 |
|
196 |
#algorithm <- "python" #PARAM 15 #if R use mosaic function for R, if python use modified gdalmerge script from Alberto Guzmann |
|
221 | 197 |
#algorithm <- "R" #if R use mosaic function for R, if python use modified gdalmerge script from Alberto Guzmann |
222 | 198 |
|
223 |
layers_option <- c("var_pred") #options are: |
|
199 |
layers_option <- args[17] # PARAM 17 options are: |
|
200 |
#layers_option <- c("var_pred") #options are: |
|
224 | 201 |
#res_training, res_testing,ac_training, ac_testing, var_pred |
225 |
tmp_files <- FALSE |
|
226 |
|
|
227 |
pred_mod_name <- "mod1" #PARAM 9 |
|
228 |
var_pred <- "res_mod1" #used in residuals mapping #PARAM 10 |
|
229 |
|
|
230 |
|
|
231 |
#CRS_WGS84 <- CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #Station coords WGS84 #CONSTANT1 |
|
232 |
#CRS_locs_WGS84<-CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #Station coords WGS84 |
|
233 |
#proj_str<- CRS_WGS84 #PARAM 8 #check this parameter |
|
234 |
|
|
235 |
file_format <- ".tif" #PARAM 14 |
|
236 |
NA_value <- -9999 #PARAM 15 |
|
237 |
NA_flag_val <- NA_value #PARAM 16 |
|
238 |
|
|
239 |
#region_names <- c("reg23","reg4") #selected region names, ##PARAM 18 |
|
240 |
use_autokrige <- F #PARAM 19 |
|
241 |
proj_str <- CRS_locs_WGS84 |
|
242 |
|
|
243 |
#in_dir can be on NEX or Atlas |
|
244 |
|
|
202 |
tmp_files <- args[18] #PARAM 18 |
|
203 |
#tmp_files <- FALSE |
|
204 |
interpolation_method <- c("gam_CAI") #PARAM19 |
|
205 |
pred_mod_name <- "mod1" #PARAM 20 |
|
206 |
var_pred <- "res_mod1" #used in residuals mapping #PARAM 21 |
|
207 |
proj_str<- CRS_WGS84 #PARAM 22 #check this parameter |
|
208 |
file_format <- ".tif" #PARAM 23 |
|
209 |
NA_value <- -9999 #PARAM 24 |
|
210 |
NA_flag_val <- NA_value #PARAM 24 |
|
211 |
use_autokrige <- F #PARAM 25 |
|
212 |
proj_str <- CRS_locs_WGS84 #PARAM 26 |
|
245 | 213 |
#python script and gdal on NEX NASA: |
246 |
mosaic_python <- "/nobackupp6/aguzman4/climateLayers/sharedCode/" |
|
247 |
python_bin <- "/nobackupp6/aguzman4/climateLayers/sharedModules2/bin" |
|
214 |
mosaic_python <- "/nobackupp6/aguzman4/climateLayers/sharedCode/" #PARAM 27
|
|
215 |
python_bin <- "/nobackupp6/aguzman4/climateLayers/sharedModules2/bin" #PARAM 28
|
|
248 | 216 |
#python script and gdal on Atlas NCEAS |
249 |
#mosaic_python <- "/data/project/layers/commons/NEX_data/sharedCode" #PARAM 26 |
|
250 |
#python_bin <- "/usr/bin" #PARAM 27 |
|
251 |
|
|
217 |
#mosaic_python <- "/data/project/layers/commons/NEX_data/sharedCode" #PARAM 29 |
|
218 |
#python_bin <- "/usr/bin" #PARAM 30 |
|
252 | 219 |
match_extent <- "FALSE" #PARAM 29 #try without matching!!! |
253 |
|
|
254 | 220 |
#for residuals... |
255 | 221 |
list_models <- NULL #PARAM 30 |
256 | 222 |
#list_models <- paste(var_pred,"~","1",sep=" ") #if null then this is the default... |
257 | 223 |
|
224 |
if (var == "TMAX") { |
|
225 |
y_var_name <- "dailyTmax" |
|
226 |
y_var_month <- "TMax" |
|
227 |
} |
|
228 |
if (var == "TMIN") { |
|
229 |
y_var_name <- "dailyTmin" |
|
230 |
y_var_month <- "TMin" |
|
231 |
} |
|
232 |
|
|
233 |
if(!(is.null(day_start)) & !(is.null(day_end))){ |
|
234 |
day_to_mosaic_range <- c(day_start,day_end) #if null run all year #PARAM 12 |
|
235 |
}else{ |
|
236 |
day_to_mosaic_range <- NULL |
|
237 |
} |
|
238 |
|
|
239 |
#browser() |
|
258 | 240 |
|
259 | 241 |
#rasterOptions(maxmemory=1e+07,timer=TRUE) |
260 | 242 |
list_param_run_mosaicing_prediction <- list(in_dir,y_var_name,interpolation_method,region_name, |
261 |
mosaicing_method,out_suffix,out_suffix_str,metric_name,pred_mod_name,var_pred, |
|
243 |
mosaicing_method,out_suffix,out_suffix_str,metric_name,pred_mod_name,var_pred, out_dir,
|
|
262 | 244 |
create_out_dir_param,day_to_mosaic_range,year_predicted,proj_str,file_format,NA_value,num_cores, |
263 | 245 |
use_autokrige,infile_mask,df_assessment_files_name,mosaic_python, |
264 | 246 |
python_bin,algorithm,match_extent,list_models,layers_option,tmp_files) |
265 | 247 |
param_names <- c("in_dir","y_var_name","interpolation_method","region_name", |
266 |
"mosaicing_method","out_suffix","out_suffix_str","metric_name","pred_mod_name","var_pred", |
|
248 |
"mosaicing_method","out_suffix","out_suffix_str","metric_name","pred_mod_name","var_pred","out_dir",
|
|
267 | 249 |
"create_out_dir_param","day_to_mosaic_range","year_predicted","proj_str","file_format","NA_value","num_cores", |
268 | 250 |
"use_autokrige","infile_mask","df_assessment_files_name","mosaic_python", |
269 | 251 |
"python_bin","algorithm","match_extent","list_models","layers_option","tmp_files") |
Also available in: Unified diff
stage 7 mosaicing, major clean up and modification to allow call from shell for jobs on NEX