Project

General

Profile

« Previous | Next » 

Revision b459ce4a

Added by Benoit Parmentier almost 9 years ago

assessment part1 call to figure plot assessment debug for shapefiles not read in

View differences:

climate/research/oregon/interpolation/global_run_scalingup_assessment_part1a.R
5 5
#Part 1 create summary tables and inputs files for figure in part 2 and part 3.
6 6
#AUTHOR: Benoit Parmentier 
7 7
#CREATED ON: 03/23/2014  
8
#MODIFIED ON: 01/03/2016            
8
#MODIFIED ON: 01/04/2016            
9 9
#Version: 5
10 10
#PROJECT: Environmental Layers project  
11 11
#TO DO:
......
433 433
                      FUN=function(i,x){try(rep(names(x)[i],nrow(x[[i]])))},x=data_month_v_subsampling_tmp)
434 434
    data_month_v_subsmapling_NAM <- do.call(rbind.fill,ddata_month_v_subsampling_tmp) #combined data_month for "NAM" North America
435 435
    data_month_v_subsampling_NAM$tile_id <- unlist(tile_id)
436
    data_month_v_subsampling_NAM$reg <- reg
436
    data_month_v_subsampling_NAM$reg <- region_name
437 437
    data_month_v_subsampling_NAM$year_predicted <- year_predicted
438 438
    
439 439
    write.table((data_month_v_subsampling_NAM),
......
508 508
  list_outfiles[[10]] <- file.path(out_dir,paste("pred_data_month_info_",year_predicted,"_",out_prefix,".txt",sep=""))
509 509
  list_outfiles[[11]] <- file.path(out_dir,paste("pred_data_day_info_",year_predicted,"_",out_prefix,".txt",sep=""))
510 510
  
511
  #browser() #debugging on 01/042016
512
  
511 513
  ######################################################
512 514
  ####### PART 4: Get shapefiles defining region tiling with centroids ###
513 515
  
......
537 539
  long<- as.numeric(lapply(1:length(tx),function(i,x){x[[i]][2]},x=tx))
538 540
  df_tile_processed$lat <- lat
539 541
  df_tile_processed$lon <- long
540

  
541 542
  
542 543
  #put that list in the df_processed and also the centroids!!
543 544
  write.table(df_tile_processed,
......
550 551
  
551 552
  #Copy to local home directory on NAS-NEX
552 553
  dir.create(file.path(out_dir,"shapefiles"))
553
  file.copy(list_shp_world,file.path(out_dir,"shapefiles"))
554
  #list_shp_world_dbf <- gsub(".shp",".*",basename(list_shp_world)) #remove shp extension, did not owork with file.copy
555
  #list_shp_world_dbf <- gsub(".shp",".dbf",basename(list_shp_world)) #remove shp extension
556
  #list_shp_world_prj <- gsub(".shp",".dbf",basename(list_shp_world)) #remove shp extension
557
  #list_shp_world_tmp <- file.path(dirname(list_shp_world), list_shp_world_tmp)
558
  list_shp_all <- list.files(path=in_dir_shp,full.names=T)#need all the files!!! including .dbf etc.
559
  file.copy(list_shp_all,file.path(out_dir,"shapefiles"))
554 560
  
555 561
  #save a list of all files...
556 562
  write.table(df_tiles_all,
......
574 580
  write.table(df_assessment_files,
575 581
              file=df_assessment_files_name,sep=",")
576 582

  
583
  #with reg4 prediction 2014, it took 1h36minutes to reach this point in the code.
584
  #this was processed using the bridge1 with 6 cores...
585
  
577 586
  ######################################################
578 587
  ####### PART 5: run plotting functions to produce figures
579 588

  
589
  #browser() #debugging on 01/042016
590
  #out_dir <- "/nobackupp8/bparmen1/output_run_global_analyses_pred_12282015"
580 591
  in_dir <- out_dir #PARAM 0
581 592
  #y_var_name <- "dailyTmax" #PARAM1 , already set
582 593
  #interpolation_method <- c("gam_CAI") #PARAM2, already set
......
596 607
  #num_cores <- 6 #PARAM 14, already set
597 608
  #region_name <- c("reg4") #reference region to merge if necessary, if world all the regions are together #PARAM 16
598 609
  #use previous files produced in step 1a and stored in a data.frame
599
  #df_assessment_files_name <- "df_assessment_files_reg4_1984_run_global_analyses_pred_12282015.txt"# #PARAM 17, set in the script
610
  #df_assessment_files_name <- "df_assessment_files_reg4_2014_run_global_analyses_pred_12282015.txt"# #PARAM 17, set in the script
611
  #df_assessment_files <- read.table(df_assessment_files_name,stringsAsFactors=F,sep=",")
600 612
  #threshold_missing_day <- c(367,365,300,200) #PARM18
601 613

  
602 614
  list_param_run_assessment_plotting <- list(in_dir,y_var_name, interpolation_method, out_suffix, 
603
                      out_dir, create_out_dir_param, mosaic_plot, proj_str, file_format, NA_value,
615
                      out_dir, create_out_dir_param, mosaic_plot, proj_str, file_format, NA_flag_val,
604 616
                      multiple_region, countries_shp, plot_region, num_cores, 
605
                      region_name, df_assessment_files_name, threshold_missing_day) 
617
                      region_name, df_assessment_files_name, threshold_missing_day,year_predicted) 
606 618

  
607 619
  names(list_param_run_assessment_plotting) <- c("in_dir","y_var_name","interpolation_method","out_suffix", 
608
                      "out_dir","create_out_dir_param","mosaic_plot","proj_str","file_format","NA_value",
620
                      "out_dir","create_out_dir_param","mosaic_plot","proj_str","file_format","NA_flag_val",
609 621
                      "multiple_region","countries_shp","plot_region","num_cores", 
610
                      "region_name","df_assessment_files_name","threshold_missing_day") 
622
                      "region_name","df_assessment_files_name","threshold_missing_day","year_predicted") 
611 623
  
612 624
  #function_assessment_part2 <- "global_run_scalingup_assessment_part2_01032016.R"
613 625
  #source(file.path(script_path,function_assessment_part2)) #source all functions used in this script 

Also available in: Unified diff