Project

General

Profile

« Previous | Next » 

Revision b46ff3f7

Added by Benoit Parmentier almost 9 years ago

assessment part 1 prediction 1992 for reg23

View differences:

climate/research/oregon/interpolation/global_run_scalingup_assessment_part1.R
5 5
#Part 1 create summary tables and inputs files for figure in part 2 and part 3.
6 6
#AUTHOR: Benoit Parmentier 
7 7
#CREATED ON: 03/23/2014  
8
#MODIFIED ON: 10/05/2015            
8
#MODIFIED ON: 12/07/2015            
9 9
#Version: 4
10 10
#PROJECT: Environmental Layers project  
11 11
#TO DO:
......
15 15
#
16 16
#First source these files:
17 17
#Resolved call issues from R.
18
#source /nobackupp6/aguzman4/climateLayers/sharedModules/etc/environ.sh 
18
#source /nobackupp6/aguzman4/climateLayers/sharedModules2/etc/environ.sh  
19 19
#MODULEPATH=$MODULEPATH:/nex/modules/files
20 20
#module load pythonkits/gdal_1.10.0_python_2.7.3_nex
21 21

  
......
69 69
#Make this a function
70 70
#reg1 (North Am), reg2(Europe),reg3(Asia), reg4 (South Am), reg5 (Africa), reg6 (Australia-Asia)
71 71
#master directory containing the definition of tile size and tiles predicted
72
#in_dir1 <- "/nobackupp6/aguzman4/climateLayers/output1000x3000_km/"
73
#in_dir1 <- "/nobackupp6/aguzman4/climateLayers/out_15x45" #PARAM1
74
#in_dir1b <- "/nobackupp6/aguzman4/climateLayers/output1500x4500_km/singles" #PARAM1, add for now in_dir1 can be a list...
75
#in_dir1 <- "/nobackupp6/aguzman4/climateLayers/output1500x4500_km/" #PARAM1, add for now in_dir1 can be a list...
76
#in_dir1 <- "/nobackupp6/aguzman4/climateLayers/output1500x4500_km/elevTest/1kmBuff/"
77 72
in_dir1 <- "/nobackupp6/aguzman4/climateLayers/out_15x45/"
78 73
#/nobackupp6/aguzman4/climateLayers/out_15x45/1982
79 74

  
80
region_names <- c("reg4") #selected region names, #PARAM2
75
region_names <- c("reg23","reg4") #selected region names, #PARAM2 
81 76
#region_names <- c("1992") #no specific region here so use date
82 77
#region_names <- c("reg1","reg2","reg3","reg4","reg5","reg6") #selected region names, #PARAM2
83 78
#region_namesb <- c("reg_1b","reg_1c","reg_2b","reg_3b","reg_6b") #selected region names, #PARAM2
84 79

  
85 80
y_var_name <- "dailyTmax" #PARAM3
86 81
interpolation_method <- c("gam_CAI") #PARAM4
87
out_prefix<-"run10_1500x4500_global_analyses_pred_1992_10052015" #PARAM5
82
out_prefix<-"run10_1500x4500_global_analyses_pred_1992_12072015" #PARAM5
88 83

  
89 84
#output_run10_1500x4500_global_analyses_pred_2003_04102015/
90 85

  
......
96 91

  
97 92
CRS_locs_WGS84 <- CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #Station coords WGS84, #PARAM8
98 93

  
99
#day_to_mosaic <- c("20100101","20100901") #PARAM9
100
#day_to_mosaic <- c("20100829","20100830","20100831",
101
#                   "20100901","20100902","20100903")
102
day_to_mosaic <- c("19920101","19920102","19920103")
103
#,"19820104","19820105",
104
#                   "19820106","19820107","19820108","19820109","19820110",
105
#                   "19820111")
94
day_to_mosaic <- c("19920101","19920102","19920103,19920104,19920105")
95

  
106 96

  
107 97
#day_to_mosaic <- NULL #if day to mosaic is null then mosaic all dates?
108 98

  
......
156 146
in_dir_shp_list <- list.files(in_dir_shp,".shp",full.names=T)
157 147

  
158 148
## load problematic tiles or additional runs
159

  
160
#in_dir_listb <- list.dirs(path=in_dir1b,recursive=FALSE) #get the list regions processed for this run
161
#basename(in_dir_list)
162
#in_dir_listb<- lapply(region_namesb,FUN=function(x,y){y[grep(x,basename(y),invert=FALSE)]},y=in_dir_listb) 
163

  
164
#in_dir_list_allb  <- lapply(in_dir_listb,function(x){list.dirs(path=x,recursive=F)})
165
#in_dir_listb <- unlist(in_dir_list_allb)
166
#in_dir_list <- in_dir_list[grep("bak",basename(basename(in_dir_list)),invert=TRUE)] #the first one is the in_dir1
167
#in_dir_subsetb <- in_dir_listb[grep("subset",basename(in_dir_listb),invert=FALSE)] #select directory with shapefiles...
168
#in_dir_shpb <- file.path(in_dir_subsetb,"shapefiles")
169

  
170
#select only directories used for predictions
171
#in_dir_regb <- in_dir_listb[grep(".*._.*.",basename(in_dir_listb),invert=FALSE)] #select directory with shapefiles...
172
#in_dir_reg <- in_dir_list[grep("july_tiffs",basename(in_dir_reg),invert=TRUE)] #select directory with shapefiles...
173
#in_dir_listb <- in_dir_regb
174
    
175
#in_dir_listb <- in_dir_listb[grep("bak",basename(basename(in_dir_listb)),invert=TRUE)] #the first one is the in_dir1
176
#list of shapefiles used to define tiles
177
#in_dir_shp_listb <- list.files(in_dir_shpb,".shp",full.names=T)
178

  
179

  
180
#### Combine now...
181

  
182
#in_dir_list <- c(in_dir_list,in_dir_listb)
183
#in_dir_reg <- c(in_dir_reg,in_dir_regb)
184
#in_dir_shp <- c(in_dir_shp,in_dir_shpb)
185
#in_dir_shp_list <- c(in_dir_shp_list,in_dir_shp_listb)
186
#in_dir_list <- c(in_dir_list,in_dir_listb)
149
#modify later...
187 150

  
188 151
#system("ls /nobackup/bparmen1")
189 152

  
......
535 498
######################################################
536 499
####### PART 2 CREATE MOSAIC OF PREDICTIONS PER DAY, Delta surfaces and clim ###
537 500

  
501
#if mosaicing_tiles==TRUE then do it?
538 502
#dates_l <- unique(robj1$tb_diagnostic_s$date) #list of dates to query tif
539 503
#create date!!!
540 504
if(is.null(day_to_mosaic)){

Also available in: Unified diff