Project

General

Profile

« Previous | Next » 

Revision b52ed033

Added by Benoit Parmentier over 12 years ago

KRIGING, modified function for memory clean up and other improvements

View differences:

climate/research/oregon/interpolation/kriging_prediction_reg_function.R
1
runKriging <- function(i) {            # loop over dates
2
  
3
  date<-strptime(dates[i], "%Y%m%d")   # interpolation date being processed
4
  month<-strftime(date, "%m")          # current month of the date being processed
5
  LST_month<-paste("mm_",month,sep="") # name of LST month to be matched
6
  
7
  #i=1
8
  date_proc<-dates[i]
9
  date_proc<-strptime(dates[i], "%Y%m%d")   # interpolation date being processed
10
  mo<-as.integer(strftime(date_proc, "%m"))          # current month of the date being processed
11
  day<-as.integer(strftime(date_proc, "%d"))
12
  year<-as.integer(strftime(date_proc, "%Y"))
13
  
14
  
15
  #Adding layer LST to the raster stack
16
  
17
  pos<-match(LST_month,layerNames(s_raster)) #Find column with the current month for instance mm12
18
  r1<-raster(s_raster,layer=pos)             #Select layer from stack
19
  layerNames(r1)<-"LST"
20
  s_raster<-addLayer(s_raster,r1)            #Adding current month
21
  s_sgdf<-as(s_raster,"SpatialGridDataFrame") #Conversion to spatial grid data frame
22
  
23
  ###Regression part 1: Creating a validation dataset by creating training and testing datasets
24
  
25
  mod_LST <-ghcn.subsets[[i]][,match(LST_month, names(ghcn.subsets[[i]]))]  #Match interpolation date and monthly LST average
26
  ghcn.subsets[[i]] = transform(ghcn.subsets[[i]],LST = mod_LST)            #Add the variable LST to the subset dataset
27
  #n<-nrow(ghcn.subsets[[i]])
28
  #ns<-n-round(n*prop)   #Create a sample from the data frame with 70% of the rows
29
  #nv<-n-ns              #create a sample for validation with prop of the rows
30
  #ind.training <- sample(nrow(ghcn.subsets[[i]]), size=ns, replace=FALSE) #This selects the index position for 70% of the rows taken randomly
31
  ind.training<-sampling[[i]]
32
  ind.testing <- setdiff(1:nrow(ghcn.subsets[[i]]), ind.training)
33
  data_s <- ghcn.subsets[[i]][ind.training, ]   #Training dataset currently used in the modeling
34
  data_v <- ghcn.subsets[[i]][ind.testing, ]    #Testing/validation dataset using input sampling
35
  
36
  ns<-nrow(data_s)
37
  nv<-nrow(data_v)
38
  
39
  ###BEFORE model prediction the data object must be transformed to SDF
40
  
41
  coords<- data_v[,c('x_OR83M','y_OR83M')]
42
  coordinates(data_v)<-coords
43
  proj4string(data_v)<-CRS  #Need to assign coordinates...
44
  coords<- data_s[,c('x_OR83M','y_OR83M')]
45
  coordinates(data_s)<-coords
46
  proj4string(data_s)<-CRS  #Need to assign coordinates..
47
  
48
  ns<-nrow(data_s) #This is added to because some loss of data might have happened because of the averaging...
49
  nv<-nrow(data_v)
50
  
51
  ### PREDICTION/ Interpolation
52
  
53
  pos<-match("value",names(data_s)) #Find column with name "value"
54
  names(data_s)[pos]<-y_var_name
55
  pos<-match("value",names(data_v)) #Find column with name "value"
56
  names(data_v)[pos]<-y_var_name
57
  
58
  #if y_var_name=="dailyTmax"
59
  data_v$y_var<-data_v[[y_var_name]]/10  #Note that values are divided by 10 because the var is temp
60
  data_s$y_var<-data_s[[y_var_name]]/10
61
  
62
  #Model and response variable can be changed without affecting the script
63
  
64
  formula1 <- as.formula("y_var ~1", env=.GlobalEnv)
65
  formula2 <- as.formula("y_var~ x_OR83M+y_OR83M", env=.GlobalEnv)
66
  formula3 <- as.formula("y_var~ x_OR83M+y_OR83M+ELEV_SRTM", env=.GlobalEnv)
67
  formula4 <- as.formula("y_var~ x_OR83M+y_OR83M+DISTOC", env=.GlobalEnv)
68
  formula5 <- as.formula("y_var~ x_OR83M+y_OR83M+ELEV_SRTM+DISTOC", env=.GlobalEnv)
69
  formula6 <- as.formula("y_var~ x_OR83M+y_OR83M+Northness+Eastness", env=.GlobalEnv)
70
  formula7 <- as.formula("y_var~ LST", env=.GlobalEnv)
71
  formula8 <- as.formula("y_var~ x_OR83M+y_OR83M+LST", env=.GlobalEnv)
72
  formula9 <- as.formula("y_var~ x_OR83M+y_OR83M+ELEV_SRTM+LST", env=.GlobalEnv)
73
                        
74
  mod1<- try(autoKrige(formula1, input_data=data_s,new_data=s_sgdf,data_variogram=data_s))
75
  mod2<- try(autoKrige(formula2, input_data=data_s,new_data=s_sgdf,data_variogram=data_s)) 
76
  mod3<- try(autoKrige(formula3, input_data=data_s,new_data=s_sgdf,data_variogram=data_s))
77
  mod4<- try(autoKrige(formula4, input_data=data_s,new_data=s_sgdf,data_variogram=data_s))
78
  mod5<- try(autoKrige(formula5, input_data=data_s,new_data=s_sgdf,data_variogram=data_s))
79
  mod6<- try(autoKrige(formula6, input_data=data_s,new_data=s_sgdf,data_variogram=data_s))
80
  mod7<- try(autoKrige(formula7, input_data=data_s,new_data=s_sgdf,data_variogram=data_s))
81
  mod8<- try(autoKrige(formula8, input_data=data_s,new_data=s_sgdf,data_variogram=data_s))
82
  mod9<- try(autoKrige(formula9, input_data=data_s,new_data=s_sgdf,data_variogram=data_s))
83

  
84
  #tmax_predicted=themolst+daily_delta_rast-bias_rast #Final surface?? but daily_rst
85
  
86
  ### Model assessment
87
  
88
  for (j in 1:nmodels){
89
    
90
    ##Model assessment: specific diagnostic/metrics for GAM
91
    
92
    name<-paste("mod",j,sep="")  #modj is the name of The "j" model (mod1 if j=1) 
93
    mod<-get(name)               #accessing GAM model ojbect "j"
94
    #krmod_auto<-get(mod)
95

  
96
    #If mod "j" is not a model object
97
    if (inherits(mod,"try-error")) {
98
      
99
      results_m1[1,1]<- dates[i]  #storing the interpolation dates in the first column
100
      results_m1[1,2]<- ns        #number of stations used in the training stage
101
      results_m1[1,3]<- "SSERR"
102
      results_m1[1,j+3]<- NA
103
      
104
      results_m2[1,1]<- dates[i]  #storing the interpolation dates in the first column
105
      results_m2[1,2]<- ns        #number of stations used in the training 
106
      results_m2[1,3]<- "GCV"
107
      results_m2[1,j+3]<- NA
108
      
109
      results_m3[1,1]<- dates[i]  #storing the interpolation dates in the first column
110
      results_m3[1,2]<- ns        #number of stations used in the training stage
111
      results_m3[1,3]<- "DEV"
112
      results_m3[1,j+3]<- NA
113
      
114
      results_RMSE_f[1,1]<- dates[i]  #storing the interpolation dates in the first column
115
      results_RMSE_f[1,2]<- ns        #number of stations used in the training stage
116
      results_RMSE_f[1,3]<- "RSME_f"
117
      results_RMSE_f[1,j+3]<- NA
118
      
119
      results_MAE_f[1,1]<- dates[i]  #storing the interpolation dates in the first column
120
      results_MAE_f[1,2]<- ns        #number of stations used in the training stage
121
      results_MAE_f[1,3]<- "MAE_f"
122
      results_MAE_f[1,j+3]<-NA
123
      
124
      results_RMSE[1,1]<- dates[i]    #storing the interpolation dates in the first column
125
      results_RMSE[1,2]<- ns          #number of stations used in the training stage
126
      results_RMSE[1,3]<- "RMSE"
127
      results_RMSE[1,j+3]<- NA  #Storing RMSE for the model j
128
      results_MAE[1,1]<- dates[i]     #storing the interpolation dates in the first column
129
      results_MAE[1,2]<- ns           #number of stations used in the training stage
130
      results_MAE[1,3]<- "MAE"
131
      results_MAE[1,j+3]<- NA    #Storing MAE for the model j
132
      results_ME[1,1]<- dates[i]      #storing the interpolation dates in the first column
133
      results_ME[1,2]<- ns            #number of stations used in the training stage
134
      results_ME[1,3]<- "ME"
135
      results_ME[1,j+3]<- NA      #Storing ME for the model j
136
      results_R2[1,1]<- dates[i]      #storing the interpolation dates in the first column
137
      results_R2[1,2]<- ns            #number of stations used in the training stage
138
      results_R2[1,3]<- "R2"
139
      results_R2[1,j+3]<- NA      #Storing R2 for the model j
140
      
141
    }
142
    
143
    #If mod is a modelobject
144
    
145
    #If mod "j" is not a model object
146
    if (inherits(mod,"autoKrige")) {
147
      
148
      rpred<-mod$krige_output  #Extracting the SptialGriDataFrame from the autokrige object
149

  
150
      #rpred<- predict(mod, newdata=s_sgdf, se.fit = TRUE) #Using the coeff to predict new values.
151
      y_pred<-rpred$var1.pred                  #is the order the same?
152
      #y_prederr<-rpred$var1.var
153
      raster_pred<-r1
154
      layerNames(raster_pred)<-"y_pred"
155
      clearValues(raster_pred)        #Clear values in memory, just in case...
156
      values(raster_pred)<-as.numeric(y_pred)  #Assign values to every pixels 
157
      
158
      data_name<-paste("predicted_mod",j,"_",dates[[i]],sep="")
159
      raster_name<-paste("Kriging_",data_name,out_prefix,".rst", sep="")
160
      writeRaster(raster_pred, filename=raster_name,overwrite=TRUE)  #Writing the data in a raster file format...(IDRISI)
161
      #writeRaster(r2, filename=raster_name,overwrite=TRUE)  #Writing the data in a raster file format...(IDRISI)
162
        
163
      #Save png plot here...
164
      data_name<-paste("predicted_mod",j,"_",dates[[i]],sep="")
165
      png_name<-paste("Kriging_plot_",data_name,out_prefix,".png", sep="")
166
      png(png_name) #Create file to write a plot
167
      #datelabel2=format(ISOdate(year,mo,day),"%B ") #Plot label
168
      plot(mod) #Plot to file the autokrige object
169
      #savePlot(paste("Bias_surface_LST_TMax_",dates[i],out_prefix,".png", sep=""), type="png")
170
      dev.off()  #Release the hold to the file
171
      
172
      pred_sgdf<-as(raster_pred,"SpatialGridDataFrame" ) #Conversion to spatial grid data frame
173
      #rpred_val_s <- overlay(raster_pred,data_s)             #This overlays the kriged surface tmax and the location of weather stations
174
        
175
      rpred_val_s <- overlay(pred_sgdf,data_s)             #This overlays the kriged surface tmax and the location of weather stations
176
      rpred_val_v <- overlay(pred_sgdf,data_v)             #This overlays the kriged surface tmax and the location of weather stations
177
        
178
      pred_mod<-paste("pred_mod",j,sep="")
179
      #Adding the results back into the original dataframes.
180
      data_s[[pred_mod]]<-rpred_val_s$y_pred
181
      data_v[[pred_mod]]<-rpred_val_v$y_pred  
182
        
183
      #Model assessment: RMSE and then krig the residuals....!
184
        
185
      res_mod_s<- data_s$y_var - data_s[[pred_mod]]           #Residuals from kriging training
186
      res_mod_v<- data_v$y_var - data_v[[pred_mod]]           #Residuals from kriging validation
187

  
188
      ####ADDED ON JULY 20th
189
      res_mod<-res_mod_v
190
      
191
      #RMSE_mod <- sqrt(sum(res_mod^2)/nv)                 #RMSE FOR REGRESSION STEP 1: GAM  
192
      RMSE_mod<- sqrt(mean(res_mod^2,na.rm=TRUE))
193
      #MAE_mod<- sum(abs(res_mod),na.rm=TRUE)/(nv-sum(is.na(res_mod)))        #MAE from kriged surface validation
194
      MAE_mod<- mean(abs(res_mod), na.rm=TRUE)
195
      #ME_mod<- sum(res_mod,na.rm=TRUE)/(nv-sum(is.na(res_mod)))                    #ME, Mean Error or bias FOR REGRESSION STEP 1: GAM
196
      ME_mod<- mean(res_mod,na.rm=TRUE)                            #ME, Mean Error or bias FOR REGRESSION STEP 1: GAM
197
      #R2_mod<- cor(data_v$y_var,data_v[[pred_mod]])^2              #R2, coef. of var FOR REGRESSION STEP 1: GAM
198
      R2_mod<- cor(data_v$y_var,data_v[[pred_mod]], use="complete")^2
199
      
200
      R2_mod_f<- cor(data_s$y_var,data_s[[pred_mod]], use="complete")^2
201
      RMSE_mod_f<- sqrt(mean(res_mod_s^2,na.rm=TRUE))
202
      #MAE_mod<- sum(abs(res_mod),na.rm=TRUE)/(nv-sum(is.na(res_mod)))        #MAE from kriged surface validation
203
      MAE_mod_f<- mean(abs(res_mod_s), na.rm=TRUE)
204
      
205
      results_m1[1,1]<- dates[i]  #storing the interpolation dates in the first column
206
      results_m1[1,2]<- ns        #number of stations used in the training stage
207
      results_m1[1,3]<- "SSERR"
208
      results_m1[1,j+3]<- mod$sserr
209
      
210
      results_m2[1,1]<- dates[i]  #storing the interpolation dates in the first column
211
      results_m2[1,2]<- ns        #number of stations used in the training 
212
      results_m2[1,3]<- "GCV"
213
      results_m2[1,j+3]<- NA
214
      
215
      results_m3[1,1]<- dates[i]  #storing the interpolation dates in the first column
216
      results_m3[1,2]<- ns        #number of stations used in the training stage
217
      results_m3[1,3]<- "DEV"
218
      results_m3[1,j+3]<- NA
219
      
220
      results_RMSE_f[1,1]<- dates[i]  #storing the interpolation dates in the first column
221
      results_RMSE_f[1,2]<- ns        #number of stations used in the training stage
222
      results_RMSE_f[1,3]<- "RSME_f"
223
      results_RMSE_f[1,j+3]<-RMSE_mod_f
224
      
225
      results_MAE_f[1,1]<- dates[i]  #storing the interpolation dates in the first column
226
      results_MAE_f[1,2]<- ns        #number of stations used in the training stage
227
      results_MAE_f[1,3]<- "MAE_f"
228
      results_MAE_f[1,j+3]<-MAE_mod_f
229
      
230
      results_R2_f[1,1]<- dates[i]      #storing the interpolation dates in the first column
231
      results_R2_f[1,2]<- ns            #number of stations used in the training stage
232
      results_R2_f[1,3]<- "R2_f"
233
      results_R2_f[1,j+3]<- R2_mod_f      #Storing R2 for the model j
234
      
235
      results_RMSE[1,1]<- dates[i]    #storing the interpolation dates in the first column
236
      results_RMSE[1,2]<- ns          #number of stations used in the training stage
237
      results_RMSE[1,3]<- "RMSE"
238
      results_RMSE[1,j+3]<- RMSE_mod  #Storing RMSE for the model j
239
      results_MAE[1,1]<- dates[i]     #storing the interpolation dates in the first column
240
      results_MAE[1,2]<- ns           #number of stations used in the training stage
241
      results_MAE[1,3]<- "MAE"
242
      results_MAE[1,j+3]<- MAE_mod    #Storing MAE for the model j
243
      results_ME[1,1]<- dates[i]      #storing the interpolation dates in the first column
244
      results_ME[1,2]<- ns            #number of stations used in the training stage
245
      results_ME[1,3]<- "ME"
246
      results_ME[1,j+3]<- ME_mod      #Storing ME for the model j
247
      results_R2[1,1]<- dates[i]      #storing the interpolation dates in the first column
248
      results_R2[1,2]<- ns            #number of stations used in the training stage
249
      results_R2[1,3]<- "R2"
250
      results_R2[1,j+3]<- R2_mod      #Storing R2 for the model j
251
      
252
      #Saving residuals and prediction in the dataframes: tmax predicted from GAM
253

  
254
      name2<-paste("res_mod",j,sep="")
255
      data_v[[name2]]<-as.numeric(res_mod_v)
256
      data_s[[name2]]<-as.numeric(res_mod_s)
257
      #end of loop calculating RMSE
258
    }
259
  }
260
  
261
  #if (i==length(dates)){
262
  
263
  #Specific diagnostic measures related to the testing datasets
264

  
265
  results_table_RMSE<-as.data.frame(results_RMSE)
266
  results_table_MAE<-as.data.frame(results_MAE)
267
  results_table_ME<-as.data.frame(results_ME)
268
  results_table_R2<-as.data.frame(results_R2)
269
  results_table_RMSE_f<-as.data.frame(results_RMSE_f)
270
  results_table_MAE_f<-as.data.frame(results_MAE_f)
271
  results_table_R2_f<-as.data.frame(results_R2_f)
272
                        
273
  results_table_m1<-as.data.frame(results_m1)
274
  results_table_m2<-as.data.frame(results_m2)
275
  results_table_m3<-as.data.frame(results_m3)
276
  
277
  tb_metrics1<-rbind(results_table_RMSE,results_table_MAE, results_table_ME, 
278
                     results_table_R2,results_table_RMSE_f,results_table_MAE_f,results_table_R2_f)   #
279
  tb_metrics2<-rbind(results_table_m1,results_table_m2, results_table_m3)
280
  cname<-c("dates","ns","metric","mod1", "mod2","mod3", "mod4", "mod5", "mod6", "mod7","mod8","mod9")
281
  colnames(tb_metrics1)<-cname
282
  cname<-c("dates","ns","metric","mod1", "mod2","mod3", "mod4", "mod5", "mod6", "mod7","mod8","mod9")
283
  colnames(tb_metrics2)<-cname
284
  #colnames(results_table_RMSE)<-cname
285
  #colnames(results_table_RMSE_f)<-cname
286
  #tb_diagnostic1<-results_table_RMSE      #measures of validation
287
  #tb_diagnostic2<-results_table_RMSE_f    #measures of fit
288
  
289
  #write.table(tb_diagnostic1, file= paste(path,"/","results_fusion_Assessment_measure1",out_prefix,".txt",sep=""), sep=",")
290
  
291
  #}  
292
  print(paste(dates[i],"processed"))
293
  # Kriging object may need to be modified...because it contains the full image of prediction!!
294
  ##loop through model objects data frame and set field to zero...
295

  
296
  mod_obj<-list(mod1,mod2,mod3,mod4,mod5,mod6,mod7,mod8,mod9)
297
  names(mod_obj)<-c("mod1","mod2","mod3","mod4","mod5","mod6","mod7","mod8","mod9") #generate names automatically??
298
  #results_list<-list(data_s,data_v,tb_metrics1,tb_metrics2)
299
  #save(mod_obj,file= paste(path,"/","results_list_mod_objects_",dates[i],out_prefix,".RData",sep=""))
300
  
301
  for (j in 1:nmodels){
302
    if (inherits(mod_obj[[j]],"autoKrige")){
303
      mod_obj[[j]]$krige_output<-NULL
304
    }
305
  }
306
  results_list<-list(data_s,data_v,tb_metrics1,tb_metrics2,mod_obj)
307
  names(results_list)<-c("data_s","data_v","tb_metrics1","tb_metrics2","mod_obj")
308
  save(results_list,file= paste(path,"/","results_list_metrics_objects_",dates[i],out_prefix,".RData",sep=""))
309
  return(results_list)
310
  #return(tb_diagnostic1)
311
}

Also available in: Unified diff