Project

General

Profile

« Previous | Next » 

Revision b6072700

Added by Benoit Parmentier almost 12 years ago

Temperature prediction, master script now calling raster prediction as a function with explicit arguments

View differences:

climate/research/oregon/interpolation/master_script_temp.R
6 6
#STAGE 1: LST climatology calculation
7 7
#STAGE 2: Covariates preparation: aspect, land cover, distance to coast etc.
8 8
#STAGE 3: Data preparation: database query, extraction of covariates from stack
9
#STAGE 4: Raster prediction: run interpolation methode -- gam fusion, gam CAI, ...
9
#STAGE 4: Raster prediction: run interpolation method -- gam fusion, gam CAI, ...
10 10
#STAGE 5: Output analyses-visualization of results for specific dates...
11 11
#
12 12
#AUTHOR: Benoit Parmentier                                                                       
13
#DATE: 03/05/2013                                                                                 
13
#DATE: 03/12/2013                                                                                 
14 14

  
15 15
#PROJECT: NCEAS INPLANT: Environment and Organisms --TASK#363, TASK$568--   
16 16

  
......
43 43

  
44 44
script_path<-"/home/parmentier/Data/IPLANT_project/Venezuela_interpolation/Venezuela_01142013/"
45 45
#list_script_files<-
46
stages_to_run<-c(1,2,3,4,5) #May decide on antoher strategy later on...
46 47

  
48
#####SCRIPT USED FOR THE PREDICTIONS
47 49

  
48
############ STAGE 1: LST Climatology ###############
50
#master_script_temp_03052013.R
51

  
52
#IN MASTER SCRIPT:
49 53

  
50
#Call run through python
51 54
#/home/parmentier/Data/IPLANT_project/Venezuela_interpolation/Venezuela_01142013/climatology_01252013b.py
55
#/home/parmentier/Data/IPLANT_project/Venezuela_interpolation/Venezuela_01142013/covariates_production_temperatures_02062013.R
56

  
57
#source(file.path(script_path,"Database_stations_covariates_processing_function_03052013.R"))
58
#source(file.path(script_path,"GAM_fusion_analysis_raster_prediction_multisampling_03052013.R"))
59
#source(file.path(script_path,"results_interpolation_date_output_analyses_03052013.R"))
60

  
61
#CALLED FROM GAM FUSION ANALYSIS RASTER PREDICTION
62

  
63
#source(file.path(script_path,"sampling_script_functions_03052013.R"))
64
#source(file.path(script_path,"GAM_fusion_function_multisampling_03052013.R")) #Include GAM_CAI
65
#source(file.path(script_path,"GAM_fusion_function_multisampling_validation_metrics_02262013.R"))
66

  
67

  
68
############ STAGE 1: LST Climatology ###############
69

  
70
if (stages_to_run[1]==1){
71
  #Call run through python
72
  #/home/parmentier/Data/IPLANT_project/Venezuela_interpolation/Venezuela_01142013/climatology_01252013b.py
73
}
52 74

  
53 75
############ STAGE 2: Covariate production ################
54 76

  
55
#Transform into function...
56
#/home/parmentier/Data/IPLANT_project/Venezuela_interpolation/Venezuela_01142013/covariates_production_temperatures_02062013.R
77
if (stages_to_run[2]==2){
78
  #Transform into function...
79
  #/home/parmentier/Data/IPLANT_project/Venezuela_interpolation/Venezuela_01142013/covariates_production_temperatures_02062013.R
80
}
57 81

  
58 82
############# STAGE 3: Data preparation ###############
59 83

  
60 84
source(file.path(script_path,"Database_stations_covariates_processing_function_03052013.R"))
61 85

  
62

  
63 86
#Setting up input argurments for script function...
64 87

  
65 88
db.name <- "ghcn"       # name of the Postgres database
......
68 91
range_years_clim<-c("2000","2011") #right bound not included in the range!!
69 92
infile1<- "outline_venezuela_region__VE_01292013.shp"      #This is the shape file of outline of the study area                                                      #It is an input/output of the covariate script
70 93
infile2<-"/home/layers/data/climate/ghcn/v2.92-upd-2012052822/ghcnd-stations.txt"                              #This is the textfile of station locations from GHCND
71
infile_covariates<-"covariates__venezuela_region__VE_01292013.tif" #this is an output from covariate script
94
infile_covariates<-"covariates__venezuela_region__VE_01292013.tif" #this is an output from covariate script and used in stage 3 and stage 4
72 95
CRS_locs_WGS84<-CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #Station coords WGS84: same as earlier
73 96
in_path <- "/home/parmentier/Data/IPLANT_project/Venezuela_interpolation/Venezuela_01142013/input_data/"
74 97
out_prefix<-"_365d_GAM_fus5_all_lstd_03052013"                #User defined output prefix
......
93 116

  
94 117
############### STAGE 4: RASTER PREDICTION #################
95 118

  
96
#Prepare parameters for for raster prediction... Turn this into a function
119
#Prepare parameters for for raster prediction... 
120

  
121
#Collect parameters from the previous stage: data preparation stage
122

  
123
#3 parameters from output
124
infile_monthly<-list_outfiles$monthly_covar_ghcn_data #outile4 from database_covar script
125
infile_daily<-list_outfiles$daily_covar_ghcn_data  #outfile3 from database_covar script
126
infile_locs<- list_outfiles$loc_stations_ghcn #outfile2? from database covar script
127

  
128
list_param_data_prep<-list(infile_monthly,infile_daily,infile_locs,infile_covariates,covar_names,var,out_prefix,CRS_locs_WGS84)
129

  
130
names(list_param_data_prep)<-c("infile_monthly","infile_daily","infile_locs","infile_covariates","covar_names","var","out_prefix","CRS_locs_WGS84")
131

  
132
#Set additional parameters
133
#Input for sampling function...
134
seed_number<- 100  #if seed zero then no seed?     
135
nb_sample<-1           #number of time random sampling must be repeated for every hold out proportion
136
step<-0         
137
constant<-0             #if value 1 then use the same samples as date one for the all set of dates
138
prop_minmax<-c(0.3,0.3)  #if prop_min=prop_max and step=0 then predicitons are done for the number of dates...
139
infile_dates<-"list_365_dates_04212012.txt"
140

  
141
#Models to run...this can be change for each run
142
list_models<-c("y_var ~ s(elev_1)",
143
               "y_var ~ s(LST)",
144
               "y_var ~ s(elev_1,LST)",
145
               "y_var ~ s(lat) + s(lon)+ s(elev_1)",
146
               "y_var ~ s(lat,lon,elev_1)",
147
               "y_var ~ s(lat,lon) + s(elev_1) + s(N_w,E_w) + s(LST)", 
148
               "y_var ~ s(lat,lon) + s(elev_1) + s(N_w,E_w) + s(LST) + s(LC2)",
149
               "y_var ~ s(lat,lon) + s(elev_1) + s(N_w,E_w) + s(LST) + s(LC6)", 
150
               "y_var ~ s(lat,lon) + s(elev_1) + s(N_w,E_w) + s(LST) + s(DISTOC)")
151

  
152
#Choose interpolation method...
153
interpolation_method<-c("gam_fusion","gam_CAI") #other otpions to be added later
154

  
155
#Default name of LST avg to be matched               
156
lst_avg<-c("mm_01","mm_02","mm_03","mm_04","mm_05","mm_06","mm_07","mm_08","mm_09","mm_10","mm_11","mm_12")  
157
in_path<-"/home/parmentier/Data/IPLANT_project/Venezuela_interpolation/Venezuela_01142013/input_data"
158
#Create on the fly output folder...
159
out_path<-"/home/parmentier/Data/IPLANT_project/Venezuela_interpolation/Venezuela_01142013/output_data"
160
script_path<-"/home/parmentier/Data/IPLANT_project/Venezuela_interpolation/Venezuela_01142013/"
161

  
162
#Collect all parameters in a list
163
list_param_raster_prediction<-list(list_param_data_prep,
164
                                seed_number,nb_sample,step,constant,prop_minmax,infile_dates,
165
                                list_models,lst_avg,in_path,out_path,script_path,
166
                                interpolation_method)
167

  
168
names(list_param_raster_prediction)<-c("list_param_data_prep",
169
                                "seed_number","nb_sample","step","constant","prop_minmax","infile_dates",
170
                                "list_models","lst_avg","in_path","out_path","script_path",
171
                                "interpolation_method")
172

  
173
#Source file
174
source(file.path(script_path,"GAM_fusion_analysis_raster_prediction_multisampling_03122013b.R"))
175

  
176
#Make the function call
177
raster_prediction_gam_fus_obj <-raster_prediction_gam_fusion(list_param_raster_prediction)
97 178

  
98
source(file.path(script_path,"GAM_fusion_analysis_raster_prediction_multisampling_03052013.R"))
99 179

  
100 180
############## STAGE 5: OUTPUT ANALYSES ##################
101 181

  

Also available in: Unified diff