Revision b67dfd67
Added by Benoit Parmentier about 10 years ago
climate/research/oregon/interpolation/subsampling_data.R | ||
---|---|---|
1 |
#################################### INTERPOLATION OF TEMPERATURES ####################################### |
|
2 |
############################ Script for manuscript analyses,tables and figures ####################################### |
|
3 |
#This script uses the worklfow code applied to the Oregon case study. Daily methods (GAM,GWR, Kriging) are tested with |
|
4 |
#different covariates using two baselines. Accuracy methods are added in the the function script to evaluate results. |
|
5 |
#Figures, tables and data for the contribution of covariate paper are also produced in the script. |
|
6 |
#AUTHOR: Benoit Parmentier |
|
7 |
#MODIFIED ON: 09/11/2014 |
|
8 |
#Version: 5 |
|
9 |
#PROJECT: Environmental Layers project |
|
10 |
################################################################################################# |
|
11 |
|
|
12 |
### Loading R library and packages |
|
13 |
#library used in the workflow production: |
|
14 |
library(gtools) # loading some useful tools |
|
15 |
library(mgcv) # GAM package by Simon Wood |
|
16 |
library(sp) # Spatial pacakge with class definition by Bivand et al. |
|
17 |
library(spdep) # Spatial pacakge with methods and spatial stat. by Bivand et al. |
|
18 |
library(rgdal) # GDAL wrapper for R, spatial utilities |
|
19 |
library(gstat) # Kriging and co-kriging by Pebesma et al. |
|
20 |
library(fields) # NCAR Spatial Interpolation methods such as kriging, splines |
|
21 |
library(raster) # Hijmans et al. package for raster processing |
|
22 |
library(gdata) # various tools with xls reading, cbindX |
|
23 |
library(rasterVis) # Raster plotting functions |
|
24 |
library(parallel) # Parallelization of processes with multiple cores |
|
25 |
library(maptools) # Tools and functions for sp and other spatial objects e.g. spCbind |
|
26 |
library(maps) # Tools and data for spatial/geographic objects |
|
27 |
library(reshape) # Change shape of object, summarize results |
|
28 |
library(plotrix) # Additional plotting functions |
|
29 |
library(plyr) # Various tools including rbind.fill |
|
30 |
library(spgwr) # GWR method |
|
31 |
library(automap) # Kriging automatic fitting of variogram using gstat |
|
32 |
library(rgeos) # Geometric, topologic library of functions |
|
33 |
#RPostgreSQL # Interface R and Postgres, not used in this script |
|
34 |
library(gridExtra) # Combining lattice plots |
|
35 |
library(colorRamps) # Palette/color ramps for symbology |
|
36 |
#Additional libraries not used in workflow |
|
37 |
library(pgirmess) # Krusall Wallis test with mulitple options, Kruskalmc {pgirmess} |
|
38 |
library(ncf) # No paramtric covariance function |
|
39 |
|
|
40 |
#### FUNCTION USED IN SCRIPT |
|
41 |
|
|
42 |
function_analyses_paper1 <-"contribution_of_covariates_paper_interpolation_functions_07182014.R" #first interp paper |
|
43 |
function_analyses_paper2 <-"multi_timescales_paper_interpolation_functions_10062014.R" |
|
44 |
|
|
45 |
############################## |
|
46 |
#### Parameters and constants |
|
47 |
|
|
48 |
script_path<-"/home/parmentier/Data/IPLANT_project/env_layers_scripts/" #path to script |
|
49 |
source(file.path(script_path,function_analyses_paper1)) #source all functions used in this script 1. |
|
50 |
source(file.path(script_path,function_analyses_paper2)) #source all functions used in this script 2. |
|
51 |
|
|
52 |
#Multi time scale - CAI: gam, kriging, gwr |
|
53 |
in_dir4 <-"/data/project/layers/commons/Oregon_interpolation/output_data_365d_gam_cai_lst_comb5_11032013" |
|
54 |
raster_obj_file_4 <- "raster_prediction_obj_gam_CAI_dailyTmax_365d_gam_cai_lst_comb5_11032013.RData" |
|
55 |
|
|
56 |
raster_prediction_obj_4 <- load_obj(file.path(in_dir4,raster_obj_file_4)) |
|
57 |
|
|
58 |
names(raster_prediction_obj_4) |
|
59 |
names(raster_prediction_obj_4$method_mod_obj[[1]]) |
|
60 |
|
|
61 |
(raster_prediction_obj_4$method_mod_obj[[1]]$data_month_v) #no holdout... |
|
62 |
data_month <- raster_prediction_obj_4$method_mod_obj[[1]]$data_month_s #no holdout... |
|
63 |
dim(data_month) |
|
64 |
test <- zerodist(data_month, zero = 0.0, unique.ID = FALSE) |
|
65 |
|
|
66 |
target_max_nb <- 200 |
|
67 |
target_min_nb <- 100 |
|
68 |
max_dist <- 10000 |
|
69 |
min_dist <- 0 |
|
70 |
step_dist <- 1000 |
|
71 |
target_range_nb <- c(target_min_nb,target_max_nb) |
|
72 |
#debug(sub_sampling_by_dist) |
|
73 |
#First increase distance till 5km |
|
74 |
#then use random sampling...to get the extact target? |
|
75 |
test <- sub_sampling_by_dist(target_range_nb,dist=min_dist,step=step_dist,data_in=data_month) |
|
76 |
|
|
77 |
dist_range <- c(0,5000) |
|
78 |
|
|
79 |
|
|
80 |
sub_sampling_stat <- function(target_range_nb=,sampling=T) |
|
81 |
|
|
82 |
sub_sampling_by_dist <- function(target_range_nb=c(10000,10000),dist=0.0,step,data_in){ |
|
83 |
data <- data_in |
|
84 |
target_min_nb <- target_range_nb[1] |
|
85 |
station_nb <- nrow(data_in) |
|
86 |
while(station_nb > target_min_nb){ #} #|| nrow > 0){ |
|
87 |
#test <- zerodist(data, zero = 0.0, unique.ID = FALSE) |
|
88 |
#test <- remove.duplicates(data_month, zero = 5000) |
|
89 |
data <- remove.duplicates(data, zero = dist) #spatially sub sample... |
|
90 |
dist <- dist + step |
|
91 |
station_nb <- nrow(data) |
|
92 |
} |
|
93 |
obj_sub_sampling <- list(data,dist) |
|
94 |
names(obj_sub_sampling) <- c("data","dist") |
|
95 |
return(obj_sub_sampling) |
|
96 |
} |
|
97 |
|
Also available in: Unified diff
initial commit for spatial subsampling code for NEX tile with many stations