Revision b695b5f1
Added by Benoit Parmentier about 8 years ago
climate/research/oregon/interpolation/global_product_assessment_part0.R | ||
---|---|---|
9 | 9 |
# |
10 | 10 |
#AUTHOR: Benoit Parmentier |
11 | 11 |
#CREATED ON: 10/27/2016 |
12 |
#MODIFIED ON: 11/16/2016
|
|
12 |
#MODIFIED ON: 11/20/2016
|
|
13 | 13 |
#Version: 1 |
14 | 14 |
#PROJECT: Environmental Layers project |
15 | 15 |
#COMMENTS: |
... | ... | |
20 | 20 |
#source /nobackupp6/aguzman4/climateLayers/sharedModules2/etc/environ.sh |
21 | 21 |
# |
22 | 22 |
#setfacl -Rm u:aguzman4:rwx /nobackupp6/aguzman4/climateLayers/LST_tempSpline/ |
23 |
#COMMIT: testing and moving generate raster of number of predictions for day with missing tiles
|
|
23 |
#COMMIT: debugging function of number of predictions for day with missing tiles
|
|
24 | 24 |
|
25 | 25 |
################################################################################################# |
26 | 26 |
|
... | ... | |
97 | 97 |
############################### |
98 | 98 |
####### Parameters, constants and arguments ### |
99 | 99 |
|
100 |
CRS_locs_WGS84<-CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #constant 1 |
|
100 |
#CRS_locs_WGS84 <- CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #constant 1 |
|
101 |
proj_str <- "+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0" |
|
102 |
|
|
101 | 103 |
var<-"TMAX" # variable being interpolated #param 1, arg 1 |
102 | 104 |
interpolation_method<-c("gam_CAI") #param 2 |
103 |
CRS_interp <- "+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0" #param 3 |
|
105 |
#CRS_interp <- "+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0" #param 3
|
|
104 | 106 |
#list_models<-c("y_var ~ s(lat,lon,k=5) + s(elev_s,k=3) + s(LST,k=3)") #param 4 |
105 | 107 |
metric_name <- "var_pred" #use RMSE if accuracy |
106 | 108 |
pred_mod_name <- "mod1" |
... | ... | |
175 | 177 |
|
176 | 178 |
list_param_predictions_tiles_missing <- list(in_dir1,region_name,y_var_name,interpolation_method,out_suffix,out_dir, |
177 | 179 |
create_out_dir_param,proj_str,list_year_predicted,file_format,NA_flag_val, |
178 |
num_cores,plotting_figures,item_no,day_to_mosaic,countries_shp,plot_region, |
|
179 |
threshold_missing_day,pred_mod_name,metric_name) |
|
180 |
num_cores,plotting_figures,item_no,day_to_mosaic_range,countries_shp,plotting_figures, |
|
181 |
#threshold_missing_day, |
|
182 |
pred_mod_name,metric_name) |
|
180 | 183 |
|
181 | 184 |
names(list_param_predictions_tiles_missing) <- c("in_dir1","region_name","y_var_name","interpolation_method","out_suffix","out_dir", |
182 | 185 |
"create_out_dir_param","proj_str","list_year_predicted","file_format","NA_flag_val", |
183 |
"num_cores","plotting_figures","item_no","day_to_mosaic","countries_shp","plot_region", |
|
184 |
"threshold_missing_day","pred_mod_name","metric_name") |
|
186 |
"num_cores","plotting_figures","item_no","day_to_mosaic_range","countries_shp","plotting_figures", |
|
187 |
#"threshold_missing_day", |
|
188 |
"pred_mod_name","metric_name") |
|
185 | 189 |
|
186 | 190 |
debug(predictions_tiles_missing_fun) |
187 | 191 |
predictions_tiles_missing_fun(1,list_param=list_param_predictions_tiles_missing) |
... | ... | |
211 | 215 |
##for plotting assessment function |
212 | 216 |
|
213 | 217 |
item_no <- list_param_run_assessment_prediction$mosaic_plot #PARAM14 |
214 |
day_to_mosaic <- list_param$day_to_mosaic #PARAM15
|
|
218 |
day_to_mosaic_range <- list_param$day_to_mosaic_range #PARAM15
|
|
215 | 219 |
countries_shp <- list_param$countries_shp #PARAM17 |
216 |
plot_region <- list_param$plot_region #PARAM18
|
|
217 |
threshold_missing_day <- list_param$threshold_missing_day #PARM20 |
|
220 |
plotting_figures <- list_param$plotting_figures #PARAM18
|
|
221 |
#threshold_missing_day <- list_param$threshold_missing_day #PARM20
|
|
218 | 222 |
pred_mod_name <- list_param$pred_mod_name |
219 | 223 |
metric_name <- list_param$metric_name |
220 | 224 |
|
Also available in: Unified diff
debugging function of number of predictions for day with missing tiles