1 |
86629ea0
|
Adam M. Wilson
|
###################################################################################
|
2 |
165c04fb
|
Adam M. Wilson
|
### R code to interpolate monthly climatologies
|
3 |
86629ea0
|
Adam M. Wilson
|
|
4 |
|
|
|
5 |
|
|
## connect to server of choice
|
6 |
|
|
#system("ssh litoria")
|
7 |
|
|
#R
|
8 |
|
|
|
9 |
|
|
library(sp)
|
10 |
165c04fb
|
Adam M. Wilson
|
#library(spgrass6)
|
11 |
86629ea0
|
Adam M. Wilson
|
library(rgdal)
|
12 |
|
|
library(reshape)
|
13 |
|
|
library(ncdf4)
|
14 |
165c04fb
|
Adam M. Wilson
|
#library(geosphere)
|
15 |
|
|
#library(rgeos)
|
16 |
86629ea0
|
Adam M. Wilson
|
library(multicore)
|
17 |
|
|
library(raster)
|
18 |
165c04fb
|
Adam M. Wilson
|
library(rasterVis)
|
19 |
86629ea0
|
Adam M. Wilson
|
library(lattice)
|
20 |
|
|
library(latticeExtra)
|
21 |
165c04fb
|
Adam M. Wilson
|
#library(rgl)
|
22 |
|
|
#library(hdf5)
|
23 |
|
|
#library(heR.Misc)
|
24 |
|
|
#library(car)
|
25 |
86629ea0
|
Adam M. Wilson
|
library(mgcv)
|
26 |
|
|
library(sampling)
|
27 |
|
|
|
28 |
|
|
X11.options(type="Xlib")
|
29 |
|
|
ncores=20 #number of threads to use
|
30 |
|
|
|
31 |
|
|
setwd("/home/adamw/acrobates/projects/interp")
|
32 |
|
|
|
33 |
|
|
## get MODLAND tile information
|
34 |
|
|
tb=read.table("http://landweb.nascom.nasa.gov/developers/sn_tiles/sn_bound_10deg.txt",skip=6,nrows=648,header=T)
|
35 |
|
|
tb$tile=paste("h",sprintf("%02d",tb$ih),"v",sprintf("%02d",tb$iv),sep="")
|
36 |
|
|
save(tb,file="modlandTiles.Rdata")
|
37 |
|
|
|
38 |
165c04fb
|
Adam M. Wilson
|
#tile="h11v08" #can move this to submit script if needed
|
39 |
|
|
tile="h21v09" #Kenya
|
40 |
|
|
tile="h09v04" #oregon
|
41 |
|
|
tiles=c("h11v08","h09v04")
|
42 |
|
|
|
43 |
86629ea0
|
Adam M. Wilson
|
psin=CRS("+proj=sinu +lon_0=0 +x_0=0 +y_0=0 +a=6371007.181 +b=6371007.181 +units=m +no_defs")
|
44 |
|
|
|
45 |
|
|
tile_bb=tb[tb$tile==tile,] ## identify tile of interest
|
46 |
|
|
roi_ll=extent(tile_bb$lon_min,tile_bb$lon_max,tile_bb$lat_min,tile_bb$lat_max)
|
47 |
|
|
|
48 |
|
|
dmod06="data/modis/mod06/summary"
|
49 |
165c04fb
|
Adam M. Wilson
|
outdir=paste("data/tiles/",tile,"/",sep="")
|
50 |
86629ea0
|
Adam M. Wilson
|
|
51 |
|
|
|
52 |
|
|
##########################
|
53 |
|
|
#### Organize the data
|
54 |
|
|
months=seq(as.Date("2000-01-15"),as.Date("2000-12-15"),by="month")
|
55 |
|
|
|
56 |
165c04fb
|
Adam M. Wilson
|
getmod06<-function(variable,month=NA){
|
57 |
|
|
d=brick(list.files(dmod06,pattern=paste("MOD06_",tile,".nc$",sep=""),full=T),varname=toupper(variable))
|
58 |
|
|
if(!is.na(month)) {
|
59 |
|
|
d=subset(d,subset=month)
|
60 |
|
|
names(d)=variable
|
61 |
|
|
}
|
62 |
|
|
if(is.na(month)){
|
63 |
|
|
setZ(d,format(as.Date(d@z$Date),"%m"),name="time")
|
64 |
|
|
layerNames(d) <- as.character(format(as.Date(d@z$Date),"%b")) #paste(variable,format(as.Date(d@z$Date),"%m"))
|
65 |
|
|
}
|
66 |
86629ea0
|
Adam M. Wilson
|
projection(d)=psin
|
67 |
|
|
return(d)
|
68 |
|
|
}
|
69 |
|
|
|
70 |
|
|
cer=getmod06("cer")
|
71 |
|
|
cld=getmod06("cld")
|
72 |
|
|
cot=getmod06("cot")
|
73 |
|
|
cer20=getmod06("cer20")
|
74 |
|
|
|
75 |
165c04fb
|
Adam M. Wilson
|
|
76 |
|
|
|
77 |
86629ea0
|
Adam M. Wilson
|
pcol=colorRampPalette(c("brown","red","yellow","darkgreen"))
|
78 |
165c04fb
|
Adam M. Wilson
|
|
79 |
|
|
### create data dir for tiled data
|
80 |
|
|
ddir=paste("data/tiles/",tile,sep="")
|
81 |
|
|
if(!file.exists(ddir)) dir.create(ddir)
|
82 |
86629ea0
|
Adam M. Wilson
|
|
83 |
|
|
## load WorldClim data for comparison (download then uncompress)
|
84 |
|
|
#system("wget -P data/worldclim/ http://biogeo.ucdavis.edu/data/climate/worldclim/1_4/grid/cur/prec_30s_bil.zip",wait=F)
|
85 |
|
|
#system("wget -P data/worldclim/ http://biogeo.ucdavis.edu/data/climate/worldclim/1_4/grid/cur/alt_30s_bil.zip",wait=F)
|
86 |
|
|
|
87 |
|
|
### load WORLDCLIM elevation
|
88 |
165c04fb
|
Adam M. Wilson
|
if(!file.exists(paste(ddir,"/dem_",tile,".tif",sep=""))){
|
89 |
|
|
dem=raster(list.files("data/worldclim/alt_30s_bil/",pattern="bil$",full=T))
|
90 |
|
|
projection(dem)=CRS("+proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0")
|
91 |
|
|
dem=crop(dem,roi_ll)
|
92 |
|
|
dem[dem>30000]=NA
|
93 |
|
|
dem=projectRaster(dem,cer)
|
94 |
|
|
writeRaster(dem,file=paste("data/tiles/",tile,"/dem_",tile,".tif",sep=""),format="GTiff",overwrite=T)
|
95 |
|
|
}
|
96 |
86629ea0
|
Adam M. Wilson
|
dem=raster(paste("data/tiles/",tile,"/dem_",tile,".tif",sep=""))
|
97 |
165c04fb
|
Adam M. Wilson
|
names(dem)="dem"
|
98 |
86629ea0
|
Adam M. Wilson
|
|
99 |
|
|
### get station data, subset to stations in region, and transform to sinusoidal
|
100 |
165c04fb
|
Adam M. Wilson
|
dm=readOGR(ddir,paste("station_monthly_",tile,"_PRCP",sep=""))
|
101 |
|
|
colnames(dm@data)[grep("elevation",colnames(dm@data))]="elev"
|
102 |
86629ea0
|
Adam M. Wilson
|
colnames(dm@data)[grep("value",colnames(dm@data))]="ppt"
|
103 |
|
|
|
104 |
165c04fb
|
Adam M. Wilson
|
#xyplot(latitude~longitude|month,data=dm@data)
|
105 |
|
|
|
106 |
|
|
## transform to sinusoidal to overlay with raster data
|
107 |
86629ea0
|
Adam M. Wilson
|
dm2=spTransform(dm,CRS(projection(cer)))
|
108 |
|
|
dm2@data[,c("x","y")]=coordinates(dm2)
|
109 |
|
|
|
110 |
165c04fb
|
Adam M. Wilson
|
## limit data to station-months with at least 300 daily observations (~10 years)
|
111 |
|
|
dm2=dm2[dm2$count>300,]
|
112 |
86629ea0
|
Adam M. Wilson
|
|
113 |
165c04fb
|
Adam M. Wilson
|
## create coordinate rasters
|
114 |
86629ea0
|
Adam M. Wilson
|
|
115 |
|
|
### create monthly raster bricks for prediction
|
116 |
165c04fb
|
Adam M. Wilson
|
getd<-function(vars=c("cer","cot","cer20","cld"),month){
|
117 |
|
|
pdata=stack(lapply(vars,function(v){getmod06(v,month=month)}))
|
118 |
|
|
x=rasterFromXYZ(coordinates(dem)[,c(1,2,1)])
|
119 |
|
|
y=rasterFromXYZ(coordinates(dem)[,c(1,2,2)])
|
120 |
|
|
pdata=stack(pdata,dem,x,y)
|
121 |
|
|
return(pdata)
|
122 |
|
|
}
|
123 |
86629ea0
|
Adam M. Wilson
|
|
124 |
|
|
## Set up models to compare
|
125 |
|
|
####################################
|
126 |
|
|
#### build table comparing various metrics
|
127 |
165c04fb
|
Adam M. Wilson
|
models=data.frame(model=c(
|
128 |
|
|
# "ppt~s(y)+ s(x)",
|
129 |
|
|
# "ppt~s(y,x)",
|
130 |
|
|
"lppt~s(y,x)",
|
131 |
|
|
"lppt~s(y,x)+s(dem)",
|
132 |
|
|
"lppt~s(y,x,dem)",
|
133 |
|
|
"lppt~s(y,x,dem)+s(cld)",
|
134 |
|
|
"lppt~s(y,x)+s(dem)+s(cld)",
|
135 |
|
|
"lppt~s(y,x)+s(cld)",
|
136 |
|
|
"lppt~s(y,x)+s(cot)",
|
137 |
|
|
"lppt~s(y,x)+s(dem)+s(cot)",
|
138 |
|
|
"lppt~s(y,x,dem)+s(cot)",
|
139 |
|
|
"lppt~s(y,x)+s(cer20)",
|
140 |
|
|
"lppt~s(y,x)+s(dem)+cld+cot+cer20",
|
141 |
|
|
"lppt~s(y,x,dem)+cld+cot+cer20",
|
142 |
|
|
"lppt~s(y,x)+s(dem)+s(cld,cot,cer20)",
|
143 |
|
|
"lppt~s(y,x)+s(dem)+s(cld)+s(cot)+s(cer20)"))
|
144 |
|
|
months=1:12
|
145 |
|
|
## add category for each model
|
146 |
|
|
models$type="Spatial"
|
147 |
|
|
models$type[grepl("cer|cot|cer20",models$model)]="MOD06"
|
148 |
|
|
models$type[grepl("cld",models$model)&!grepl("cer|cot|cer20",models$model)]="MOD35"
|
149 |
86629ea0
|
Adam M. Wilson
|
|
150 |
|
|
## build the list of models/months to process
|
151 |
165c04fb
|
Adam M. Wilson
|
mm=expand.grid(model=models$model,months=months,stringsAsFactors=F)
|
152 |
|
|
mm$mid=match(mm$model,models$model)
|
153 |
86629ea0
|
Adam M. Wilson
|
|
154 |
|
|
### Sample validation stations
|
155 |
|
|
prop=0.1
|
156 |
|
|
|
157 |
|
|
### run it
|
158 |
165c04fb
|
Adam M. Wilson
|
fitmod<-function(i,prop=0.1,predict=F, nv,...){
|
159 |
|
|
model=as.character(mm$model[i])
|
160 |
|
|
month=mm$month[i]
|
161 |
|
|
mid=mm$mid[i]
|
162 |
|
|
### extract data
|
163 |
|
|
dr=getd(month=month)
|
164 |
|
|
## subset data for this month
|
165 |
|
|
dt=dm2[dm2$month==month,]
|
166 |
|
|
## add log+1 ppt
|
167 |
|
|
dt$lppt=log(dt$ppt+1)
|
168 |
|
|
## extract for points from dm2
|
169 |
|
|
dr2=subset(dr,subset=grep("^x$|^y$",names(dr),invert=T))
|
170 |
|
|
ds=cbind.data.frame(dt@data,extract(dr2,dt))
|
171 |
|
|
### flag stations to hold out for validation
|
172 |
|
|
ts2=do.call(rbind.data.frame,lapply(1:nv,function(r) {
|
173 |
|
|
ds$validation=F
|
174 |
|
|
ds$validation[sample(1:nrow(ds),size=as.integer(prop*nrow(ds)))]=T
|
175 |
|
|
### fit model
|
176 |
|
|
mod<<-try(gam(as.formula(model),data=ds[!ds$validation,]),silent=T)
|
177 |
|
|
## if fitting fails, return a NULL
|
178 |
|
|
if(class(mod)[[1]]=="try-error") return(NULL)
|
179 |
|
|
### Model Validation
|
180 |
|
|
vd=ds[ds$validation,] # extract validation points
|
181 |
|
|
y=as.data.frame(predict(mod,ds,se.fit=T)) # make predictions
|
182 |
|
|
if(attr(terms(mod),"variables")[[2]]=="lppt"){ #if modeling log(ppt+1), transform back to real units
|
183 |
|
|
y$fit=exp(y$fit)-1
|
184 |
|
|
y$se.fit=exp(y$se.fit)-1
|
185 |
|
|
}
|
186 |
|
|
ds[,c("pred","pred.se")]=cbind(y$fit,y$se.fit)
|
187 |
|
|
ds$model=model
|
188 |
|
|
ds$modelid=mid
|
189 |
|
|
vlm=lm(pred~ppt,data=ds[ds$validation,]) # lm() to summarize predictive fit
|
190 |
|
|
if(r==nv) ds<<-ds #if on last iteration, save predictions
|
191 |
|
|
### summarize validation
|
192 |
|
|
s1=summary(mod)
|
193 |
|
|
s2=data.frame(
|
194 |
|
|
model.r2=s1$r.sq,
|
195 |
|
|
model.dev=s1$dev.expl,
|
196 |
|
|
model.aic=AIC(mod),
|
197 |
|
|
valid.rmse=sqrt(mean((vd$ppt-y$fit[ds$validation])^2,na.rm=T)),
|
198 |
|
|
valid.nrmse=sqrt(mean((vd$ppt-y$fit[ds$validation])^2,na.rm=T))/mean(vd$ppt+.1,na.rm=T),
|
199 |
|
|
valid.mer=mean(vd$ppt-y$fit[ds$validation],na.rm=T),
|
200 |
|
|
valid.mae=mean(abs(vd$ppt-y$fit[ds$validation]),na.rm=T),
|
201 |
|
|
valid.r2=summary(vlm)$r.squared)
|
202 |
|
|
return(s2)}))
|
203 |
|
|
## summarize the gcv datasets
|
204 |
|
|
if(nrow(ts2)==0) return(NULL)
|
205 |
|
|
s2a=data.frame(mean=apply(ts2,2,mean,na.rm=T))
|
206 |
|
|
s2b=t(apply(ts2,2,quantile,c(0.025,0.975),na.rm=T))
|
207 |
|
|
colnames(s2b)=paste("Q",c(2.5,97.5),sep="")
|
208 |
|
|
s2=cbind.data.frame(tile=tile, model=model, modelid=mid, month=month,
|
209 |
|
|
metric=rownames(s2a),s2a,s2b)
|
210 |
|
|
rownames(s2)=1:nrow(s2)
|
211 |
|
|
### add some attributes to the object to help ID it later
|
212 |
|
|
attr(mod,"month")=ds$month[1]
|
213 |
|
|
attr(mod,"model")=model
|
214 |
|
|
attr(mod,"modelid")=mid
|
215 |
|
|
### generate predictions?
|
216 |
|
|
if(predict){
|
217 |
|
|
## write prediction
|
218 |
|
|
ncfile=paste(outdir,tile,"_pred_",ds$month[1],"_",mid[1],".nc",sep="")
|
219 |
|
|
predict(dr,mod,filename=ncfile,format="CDF",overwrite=T)
|
220 |
|
|
## add some attributes to nc file
|
221 |
|
|
ncopath=""
|
222 |
|
|
## add other attributes
|
223 |
|
|
system(paste(ncopath,"ncrename -v variable,ppt ",ncfile,sep=""))
|
224 |
|
|
system(paste(ncopath,"ncatted -a units,ppt,o,c,\"mm\" ",
|
225 |
|
|
"-a model,ppt,o,c,\"",model,"\" ",
|
226 |
|
|
"-a long_name,ppt,o,c,\"Mean Monthly Precipitation\" ",
|
227 |
|
|
ncfile,sep=""))
|
228 |
|
|
## create NC file to hold summary data and then append it to output file
|
229 |
|
|
## add table for validation metrics
|
230 |
|
|
s2_dim1=ncdim_def("metrics1",units="",vals=1:ncol(s2),unlim=FALSE,create_dimvar=T,longname="Model Fitting and Validation Metrics")
|
231 |
|
|
s2_dim2=ncdim_def("metrics2",units="",vals=1:nrow(s2),unlim=FALSE,create_dimvar=T,longname="Model Fitting and Validation Metrics")
|
232 |
|
|
s2_var=ncvar_def("modelmetrics",units="varies",list(s2_dim1,s2_dim2),missval=-999,longname="Model Fitting and Validation Metrics",
|
233 |
|
|
prec="float")
|
234 |
|
|
## simplify data table for incorporation into netcdf file
|
235 |
|
|
ds2=ds[,-1];ds2$validation=ifelse(ds2$validation,1,0)
|
236 |
|
|
ds2=as.matrix(ds2)
|
237 |
|
|
data_dim1=ncdim_def("data",units="",vals=1:ncol(ds2),unlim=FALSE,create_dimvar=T,longname="Data used in model fitting")
|
238 |
|
|
data_dim2=ncdim_def("stations",units="",vals=1:nrow(ds2),unlim=FALSE,create_dimvar=T,longname="Stations used in model fitting")
|
239 |
|
|
data_var=ncvar_def("modeldata",units="varies",list(data_dim1,data_dim2),missval=-999,longname="Data used in model fitting",
|
240 |
|
|
prec="float")
|
241 |
|
|
tncf=paste(tempdir(),"/",tile,month,mid,"metrics.nc",sep="") #temp file to hold metric data
|
242 |
|
|
nc_create(filename=tncf,vars=list(data_var,s2_var))
|
243 |
|
|
tnc=nc_open(tncf,write=T)
|
244 |
|
|
# ncvar_put(tnc,s2_var,vals=s2) ## put in validatation data
|
245 |
|
|
ncvar_put(tnc,data_var,vals=ds2) ## put in validatation data
|
246 |
|
|
nc_close(tnc) ## close the file
|
247 |
|
|
system(paste(ncopath,"ncks -A ",tncf," ",ncfile,sep=""))
|
248 |
|
|
system(paste(ncopath,"ncatted -a value,modelmetrics,o,c,\"",paste(1:ncol(s2),":",colnames(s2),collapse="
|
249 |
|
|
",sep=""),"\" ",ncfile,sep=""))
|
250 |
|
|
## also add metrics as variable attributes for easier viewing
|
251 |
|
|
for(c in 1:ncol(s2)) system(paste(ncopath,"ncatted -a ",colnames(s2)[c],",ppt,o,",
|
252 |
|
|
ifelse(class(s2[1,c])!="numeric","c,\"","d,"),s2[1,c],
|
253 |
|
|
ifelse(class(s2[1,c])!="numeric","\" "," "),ncfile,sep=""))
|
254 |
|
|
## Add time dimension to ease merging files later
|
255 |
|
|
system(paste(ncopath,"ncecat -O -u time ",ncfile," ",ncfile,sep=""))
|
256 |
|
|
cat(paste("
|
257 |
|
|
netcdf time {
|
258 |
|
|
dimensions:
|
259 |
|
|
time = 1 ;
|
260 |
|
|
variables:
|
261 |
|
|
int time(time) ;
|
262 |
|
|
time:units = \"months since 2000-01-01 00:00:00\" ;
|
263 |
|
|
time:calendar = \"gregorian\";
|
264 |
|
|
time:long_name = \"time of observation\";
|
265 |
|
|
data:
|
266 |
|
|
time=",as.integer(ds$month[1]-1),";
|
267 |
|
|
}"),file=paste(tempdir(),"/time.cdl",sep=""))
|
268 |
|
|
system(paste("ncgen -o ",tempdir(),"/time.nc ",tempdir(),"/time.cdl",sep=""))
|
269 |
|
|
system(paste(ncopath,"ncks -A ",tempdir(),"/time.nc ",ncfile,sep=""))
|
270 |
|
|
## global attributes
|
271 |
|
|
system(paste(ncopath,"ncatted -a title,global,o,c,\"Interpolated Monthly Precipitation\" ",
|
272 |
|
|
"-a institution,global,o,c,\"Yale University\" ",
|
273 |
|
|
"-a source,global,o,c,\"Interpolated from station data\" ",
|
274 |
|
|
"-a contact,global,o,c,\"adam.wilson@yale.edu\" ",
|
275 |
|
|
ncfile,sep=""))
|
276 |
86629ea0
|
Adam M. Wilson
|
}
|
277 |
165c04fb
|
Adam M. Wilson
|
print(paste("Finished model ",model," for month",ds$month[1]))
|
278 |
|
|
return(list(model=mod,summary=s2,data=ds))
|
279 |
|
|
}
|
280 |
86629ea0
|
Adam M. Wilson
|
|
281 |
165c04fb
|
Adam M. Wilson
|
mods=lapply(1:nrow(mm),fitmod,predict=F,nv=100)
|
282 |
86629ea0
|
Adam M. Wilson
|
|
283 |
165c04fb
|
Adam M. Wilson
|
## extract summary tables and write them
|
284 |
|
|
sums=do.call(rbind.data.frame,lapply(mods,function(m) return(m$summary)))
|
285 |
|
|
write.csv(sums,paste(outdir,tile,"_validation.csv",sep=""))
|
286 |
|
|
pred=lapply(mods,function(m) return(m$data))
|
287 |
|
|
### messy error handling to remove tables with incorrect number of columns...
|
288 |
|
|
nullpred=which(!do.call(c,lapply(pred,function(x) ncol(x)==20&!is.null(x))))
|
289 |
|
|
pred=pred[nullpred]
|
290 |
|
|
pred=do.call(rbind.data.frame,pred)
|
291 |
|
|
pred$tile=tile
|
292 |
|
|
write.csv(pred,paste(outdir,tile,"_predictions.csv",sep=""))
|
293 |
86629ea0
|
Adam M. Wilson
|
|
294 |
165c04fb
|
Adam M. Wilson
|
### read them back
|
295 |
86629ea0
|
Adam M. Wilson
|
|
296 |
165c04fb
|
Adam M. Wilson
|
#sums=do.call(rbind.data.frame,lapply(tiles,function(tile) read.csv(paste("data/tiles/",tile,"/",tile,"_validation.csv",sep=""))))
|
297 |
|
|
sums=read.csv(paste(outdir,tile,"_validation.csv",sep=""))
|
298 |
|
|
pred=read.csv(paste(outdir,tile,"_predictions.csv",sep=""))
|
299 |
86629ea0
|
Adam M. Wilson
|
|
300 |
165c04fb
|
Adam M. Wilson
|
#sums=rbind.data.frame(sums,read.csv(paste("data/tiles/",tiles[1],"/",tiles[1],"_validation.csv",sep="")))
|
301 |
|
|
#pred=read.csv(paste(outdir,tiles[1],"_predictions.csv",sep=""))
|
302 |
86629ea0
|
Adam M. Wilson
|
|
303 |
165c04fb
|
Adam M. Wilson
|
|
304 |
|
|
## reshape summary validation data
|
305 |
|
|
#sumsl=melt(sums,id.vars=c("tile","model","modelid","month"))
|
306 |
|
|
sum2=cast(sums[,-1],model+modelid~metric,value="mean",fun=function(x) c(median=round(median(x,na.rm=T),2),sd=round(sd(x,na.rm=T),2)));sum2
|
307 |
|
|
|
308 |
|
|
#by(sum2,tile,function(x) rank(apply(cbind(rank(x$valid.rmse_median),rank(-x$valid.r2_median)),1,mean,na.rm=T)))
|
309 |
|
|
#sum2$rank=rank(apply(cbind(rank(sum2$valid.rmse_median),rank(-sum2$valid.r2_median)),1,mean,na.rm=T))
|
310 |
|
|
|
311 |
|
|
|
312 |
|
|
## add sorting variables across months
|
313 |
|
|
sum2$rank=rank(apply(cbind(rank(sum2$valid.rmse_median),rank(-sum2$valid.r2_median)),1,mean,na.rm=T))
|
314 |
|
|
sum2[order(sum2$rank),c("model","modelid","valid.r2_median","valid.rmse_median","valid.nrmse_median","rank"),] #"valid.mer_mean",
|
315 |
|
|
sums$fmodel=factor(sums$model,ordered=T,levels=rev(sum2$model[order(sum2$rank)]))
|
316 |
|
|
|
317 |
|
|
## add sorting variables for each month
|
318 |
|
|
sumsl2=cast(model~month~metric,value="mean",data=sums)
|
319 |
|
|
sumsl2[,,"valid.r2"]
|
320 |
86629ea0
|
Adam M. Wilson
|
|
321 |
|
|
#combineLimits(useOuterStrips(xyplot(value~month|model+variable,data=sumsl,scale=list(relation="free"))))
|
322 |
165c04fb
|
Adam M. Wilson
|
sums2=sums[sums$metric%in%c("valid.r2","valid.rmse"),]
|
323 |
|
|
|
324 |
|
|
|
325 |
86629ea0
|
Adam M. Wilson
|
|
326 |
165c04fb
|
Adam M. Wilson
|
###############################################################
|
327 |
|
|
###############################################################
|
328 |
|
|
### Draw some plots
|
329 |
|
|
library(maptools)
|
330 |
|
|
coast=getRgshhsMap(fn="/home/adamw/acrobates/Global/GSHHS_shp/gshhs/gshhs_l.b",
|
331 |
|
|
xlim=c(360+roi_ll@xmin,360+roi_ll@xmax),ylim=c(roi_ll@ymin,roi_ll@ymax),level=1)
|
332 |
|
|
coast=as(coast,"SpatialLines")
|
333 |
|
|
coast=spTransform(coast,psin)
|
334 |
86629ea0
|
Adam M. Wilson
|
|
335 |
165c04fb
|
Adam M. Wilson
|
roi=spTransform(roi,psin)
|
336 |
|
|
roil=as(roi,"SpatialLines")
|
337 |
86629ea0
|
Adam M. Wilson
|
|
338 |
|
|
|
339 |
165c04fb
|
Adam M. Wilson
|
### quantile function
|
340 |
86629ea0
|
Adam M. Wilson
|
gq=function(x,n=10,cut=F) {
|
341 |
|
|
if(!cut) return(unique(quantile(x,seq(0,1,len=n+1),na.rm=T)))
|
342 |
|
|
if(cut) return(cut(x,unique(quantile(x,seq(0,1,len=n+1),na.rm=T))))
|
343 |
|
|
}
|
344 |
165c04fb
|
Adam M. Wilson
|
bgyr=colorRampPalette(c("brown","yellow","green","darkgreen","blue"))
|
345 |
|
|
X11.options(type="cairo")
|
346 |
|
|
|
347 |
|
|
|
348 |
|
|
png(paste("output/ModelComparisonRasters_",tile,"_%02d.png",sep=""),width=3000,height=2000,res=300,bg="transparent",type="cairo-png")
|
349 |
|
|
|
350 |
|
|
## COT climatologies
|
351 |
|
|
at=unique(seq(0,30,len=100))
|
352 |
|
|
p=levelplot(cot,xlab.top=title,at=at,col.regions=bgyr(length(at)))+layer(sp.lines(coast, lwd=1.2, col='black'))
|
353 |
|
|
print(p)
|
354 |
|
|
|
355 |
|
|
## all monthly predictions
|
356 |
|
|
p1=brick(stack(list.files(outdir,pattern="pred_.*_10.nc$",full=T),varname="ppt"))
|
357 |
|
|
projection(p1)=psin
|
358 |
|
|
names(p1)=month.name
|
359 |
|
|
title=""#"Interpolated Precipitation"
|
360 |
|
|
at=unique(quantile(as.matrix(p1),seq(0,1,len=100),na.rm=T))
|
361 |
|
|
at=unique(seq(min(p1@data@min),max(p1@data@max),len=100))
|
362 |
|
|
p=levelplot(p1,xlab.top=title,at=at,col.regions=bgyr(length(at)))#+layer(sp.lines(roil, lwd=1.2, col='black'))
|
363 |
|
|
print(p)
|
364 |
|
|
|
365 |
|
|
## compare two models
|
366 |
|
|
p2=brick(stack(list.files(outdir,pattern="pred_3_3.nc|pred_3_12.nc",full=T)[2:1],varname="ppt"))
|
367 |
|
|
projection(p2)=psin
|
368 |
|
|
names(p2)=c("X+Y+Elevation","X+Y+Elevation+MOD06")
|
369 |
|
|
at=unique(seq(min(p2@data@min),max(p2@data@max),len=100))
|
370 |
|
|
p=levelplot(p2,xlab.top=title,at=at,col.regions=bgyr(length(at)))+layer(sp.lines(coast, lwd=1.2, col='black'))
|
371 |
|
|
print(p)
|
372 |
|
|
dev.off()
|
373 |
|
|
|
374 |
|
|
png(paste("output/dem_",tile,".png",sep=""),width=3000,height=3000,res=300,bg="transparent")
|
375 |
|
|
at=unique(seq(min(dem@data@min),max(dem@data@max),len=100))
|
376 |
|
|
st=unique(coordinates(dm2))
|
377 |
|
|
levelplot(dem,col.regions=terrain.colors(100),at=at,margin=F)+
|
378 |
|
|
layer(panel.xyplot(st[,1],st[,2],cex=.5,pch=3,col="black"))
|
379 |
|
|
dev.off()
|
380 |
|
|
|
381 |
|
|
pdf(paste("output/ModelComparison_",tile,".pdf",sep=""),width=11,height=5,useDingbats=F)
|
382 |
|
|
|
383 |
|
|
bwplot(fmodel~mean|metric,data=sums2,scale=list(x=list(relation="free")),subscripts=T,panel=function(x,y,subscripts){
|
384 |
|
|
panel.abline(v=mean(x))
|
385 |
|
|
types=models$type[match(sort(unique(y)),models$model)]
|
386 |
|
|
panel.bwplot(x,y,fill=ifelse(types=="Spatial","grey",ifelse(types=="MOD35","dodgerblue","orangered")))
|
387 |
|
|
# panel.text(x,jitter(as.numeric(y),factor=.5),labels=as.character(sums2$month[subscripts]),col="grey40",cex=.3)
|
388 |
|
|
panel.xyplot(x,y,pch=16,col="grey48",cex=.5)
|
389 |
|
|
},
|
390 |
|
|
#strip=strip.custom(factor.levels=c("Validation R^2","Validation RMSE")),
|
391 |
|
|
main="Comparison of Validation Metrics",sub="Vertical line indicates overall mean",
|
392 |
|
|
key=list(space="right",rect=list(col=c("orangered","dodgerblue","grey")),text=list(c("MOD06","MOD35","Spatial"))))
|
393 |
|
|
|
394 |
|
|
dev.off()
|
395 |
|
|
|
396 |
|
|
|
397 |
|
|
### illustration of GAM for IBS poster
|
398 |
|
|
#mm
|
399 |
|
|
i=56
|
400 |
|
|
mm[i,]
|
401 |
|
|
tm=fitmod(i,predict=F,nv=1)
|
402 |
|
|
|
403 |
|
|
## partial residual plots
|
404 |
|
|
var=4
|
405 |
|
|
fv <- predict(tm$mod,type="terms") ## get term estimates
|
406 |
|
|
v=sub("[)]","",sub("s[(]","",colnames(fv)))[var]
|
407 |
|
|
## compute partial residuals for first smooth...
|
408 |
|
|
prsd1 <- residuals(tm$mod,type="working") + fv[,var]
|
409 |
|
|
|
410 |
|
|
pdf(paste("output/GAMexample.pdf"),width=11,height=6,useDingbats=F)
|
411 |
|
|
plot(tm$mod,select=var,las=1,rug=F,cex.lab=2,cex.axis=2) ## plot first smooth
|
412 |
|
|
points(tm$mod$model[,v],prsd1,pch=16,cex=.5,col="red")
|
413 |
|
|
dev.off()
|
414 |
|
|
|
415 |
|
|
|
416 |
|
|
xyplot(mean~month|metric,groups=model,type="l",data=sums,scale=list(y=list(relation="free")),auto.key=list(space="right"))#+layer(panel.xyplot(x,y,pch=16,col="grey"),under=T)+layer(panel.abline(v=mean(x)))
|
417 |
|
|
|
418 |
|
|
sums$type=as.factor(models$type[match(sums$model,models$model)])
|
419 |
|
|
|
420 |
|
|
xyplot(mean~month|metric,groups=model,type="l",data=sums2,panel=function(x,y,subscripts,groups){
|
421 |
|
|
tsums=sums[subscripts,]
|
422 |
|
|
panel.xyplot(x,y,groups=groups,type="l",subscripts=subscripts,col=ifelse(tsums$type=="Spatial","grey20",ifelse(tsums$type=="MOD35","blue","red")))
|
423 |
|
|
panel.segments(tsums$month,tsums$Q2.5,tsums$month,tsums$Q97.5,groups=groups,subscripts=subscripts)
|
424 |
|
|
},subscripts=T,scale=list(y=list(relation="free")),
|
425 |
|
|
key=list(space="right",text=list(c("Spatial","MOD35","MOD06")),lines=list(col=c("grey20","blue","red"))))
|
426 |
|
|
|
427 |
|
|
#+layer(panel.xyplot(x,y,pch=16,col="grey"),under=T)+layer(panel.abline(v=mean(x)))
|
428 |
|
|
|
429 |
|
|
|
430 |
|
|
xyplot(pred~ppt|as.factor(month),groups=validation,data=pred,panel=function(x,y,subscripts,groups){
|
431 |
|
|
panel.xyplot(x,y,groups=groups,subscripts=subscripts)
|
432 |
|
|
panel.abline(0,1,col="red",lwd=2)
|
433 |
|
|
},scales=list(relation="free"),
|
434 |
|
|
main="Predicted vs. Observed mean monthly precipitation at validation stations",
|
435 |
|
|
sub="Line is y=x",auto.key=T)
|
436 |
|
|
|
437 |
|
|
## plot prediction rasters
|
438 |
|
|
|
439 |
|
|
p=raster(ncfile,varname="ppt")
|
440 |
|
|
|
441 |
|
|
plot3D(dem, maxpixels=100000,zfac=.5, drape=p, rev=FALSE, adjust=TRUE)
|
442 |
|
|
|
443 |
|
|
|
444 |
|
|
|
445 |
|
|
###################################################################
|
446 |
|
|
###################################################################
|
447 |
86629ea0
|
Adam M. Wilson
|
|
448 |
|
|
### add some additional variables
|
449 |
|
|
mod06s$month=factor(mod06s$month,labels=format(as.Date(paste("2000",1:12,"15",sep="-")),"%b"))
|
450 |
|
|
mod06s$lppt=log(mod06s$ppt)
|
451 |
|
|
mod06s$glon=cut(mod06s$lon,gq(mod06s$lon,n=5),include.lowest=T,ordered=T)#gq(mod06s$lon,n=3))
|
452 |
|
|
mod06s$glon2=cut(mod06s$lon,breaks=c(-125,-122,-115),labels=c("Coastal","Inland"),include.lowest=T,ordered=T)#gq(mod06s$lon,n=3))
|
453 |
|
|
mod06s$gelev=cut(mod06s$elev,breaks=gq(mod06s$elev,n=3),labels=c("Low","Mid","High"),include.lowest=T,ordered=T)
|
454 |
|
|
mod06s$gbin=factor(paste(mod06s$gelev,mod06s$glon2,sep="_"),levels=c("Low_Coastal","Mid_Coastal","High_Coastal","Low_Inland","Mid_Inland","High_Inland"),ordered=T)
|
455 |
|
|
mod06s$LWP_mean=(2/3)*mod06s$CER_mean*mod06s$COT_mean
|
456 |
|
|
|
457 |
|
|
## melt it
|
458 |
|
|
mod06sl=melt(mod06s[,!grepl("lppt",colnames(mod06s))],id.vars=c("id","lon","lat","elev","month","ppt","glon","glon2","gelev","gbin"))
|
459 |
|
|
levels(mod06sl$variable)=c("Effective Radius (um)","Very Cloudy Days (%)","Cloudy Days (%)","Optical Thickness (%)","Liquid Water Path")
|
460 |
|
|
|
461 |
|
|
pdf("output/MOD06_summary.pdf",width=11,height=8.5)
|
462 |
|
|
|
463 |
|
|
# % cloudy maps
|
464 |
|
|
title="Cloudiness (% cloudy days) "
|
465 |
|
|
at=unique(quantile(as.matrix(cld),seq(0,1,len=100),na.rm=T))
|
466 |
|
|
p=levelplot(cld,xlab.top=title,at=at,col.regions=bgyr(length(at)))#+layer(sp.lines(roil, lwd=1.2, col='black'))
|
467 |
|
|
print(p)
|
468 |
|
|
#bwplot(cer,main=title,ylab="Cloud Effective Radius (microns)")
|
469 |
|
|
|
470 |
|
|
# CER maps
|
471 |
|
|
title="Cloud Effective Radius (microns)"
|
472 |
|
|
at=quantile(as.matrix(cer),seq(0,1,len=100),na.rm=T)
|
473 |
|
|
p=levelplot(cer,xlab.top=title,at=at,col.regions=bgyr(length(at)))#+layer(sp.lines(roil, lwd=1.2, col='black'))
|
474 |
|
|
print(p)
|
475 |
|
|
#bwplot(cer,main=title,ylab="Cloud Effective Radius (microns)")
|
476 |
|
|
|
477 |
|
|
# CER20 maps
|
478 |
|
|
title="% Days with Cloud Effective Radius > 20 microns"
|
479 |
|
|
at=unique(quantile(as.matrix(cer20),seq(0,1,len=100),na.rm=T))
|
480 |
|
|
p=levelplot(cer20,xlab.top=title,at=at,col.regions=bgyr(length(at)))#+layer(sp.lines(roil, lwd=1.2, col='black'))
|
481 |
|
|
print(p)
|
482 |
|
|
#bwplot(cer,main=title,ylab="Cloud Effective Radius (microns)")
|
483 |
|
|
|
484 |
|
|
# COT maps
|
485 |
|
|
title="Cloud Optical Thickness (%)"
|
486 |
|
|
at=quantile(as.matrix(cot),seq(0,1,len=100),na.rm=T)
|
487 |
|
|
p=levelplot(cot,xlab.top=title,at=at,col.regions=bgyr(length(at)))#+layer(sp.lines(roil, lwd=0.8, col='black'))
|
488 |
|
|
print(p)
|
489 |
|
|
#bwplot(cot,xlab.top=title,ylab="Cloud Optical Thickness (%)")
|
490 |
|
|
dev.off()
|
491 |
|
|
|
492 |
|
|
|
493 |
|
|
|
494 |
|
|
|
495 |
|
|
|
496 |
|
|
|
497 |
|
|
### Calculate the slope of each line
|
498 |
|
|
mod06s.sl=dapply(mod06s,list(id=mod06s$id),function(x){
|
499 |
|
|
lm1=lm(log(x$ppt)~x$CER_mean,)
|
500 |
|
|
data.frame(lat=x$lat[1],lon=x$lon[1],elev=x$elev[1],intcpt=coefficients(lm1)[1],cer=coefficients(lm1)[2],r2=summary(lm1)$r.squared)
|
501 |
|
|
})
|
502 |
|
|
mod06s.sl$cex=gq(mod06s.sl$r2,n=5,cut=T)
|
503 |
|
|
mod06s.sl$cer.s=gq(mod06s.sl$cer,n=5,cut=T)
|
504 |
|
|
|
505 |
|
|
### and plot it on a map
|
506 |
|
|
xyplot(lat~lon,group=cer.s,data=mod06s.sl,par.settings = list(superpose.symbol = list(pch =16, col=bgyr(5),cex=1)),auto.key=list(space="right",title="Slope Coefficient"),asp=1,
|
507 |
|
|
main="Slopes of linear regressions {log(ppt)~CloudEffectiveRadius}")+
|
508 |
|
|
layer(sp.lines(roi_geo, lwd=1.2, col='black'))
|
509 |
|
|
|
510 |
|
|
### look for relationships with longitude
|
511 |
|
|
xyplot(cer~lon,group=cut(mod06s.sl$elev,gq(mod06s.sl$elev,n=5)),data=mod06s.sl,
|
512 |
|
|
par.settings = list(superpose.symbol = list(col=bgyr(5),pch=16,cex=1)),auto.key=list(space="right",title="Station Elevation"),
|
513 |
|
|
ylab="Slope of lm(ppt~EffectiveRadius)",xlab="Longitude",main="Precipitation~Effective Radius relationship by latitude")
|
514 |
|
|
|
515 |
|
|
|
516 |
|
|
############################################################
|
517 |
|
|
### simple regression to get spatial residuals
|
518 |
|
|
m="01"
|
519 |
|
|
mod06s2=mod06s#[mod06s$month==m,]
|
520 |
|
|
|
521 |
|
|
lm1=lm(log(ppt)~CER_mean*month*lon,data=mod06s2); summary(lm1)
|
522 |
|
|
mod06s2$pred=exp(predict(lm1,mod06s2))
|
523 |
|
|
mod06s2$resid=mod06s2$pred-mod06s2$ppt
|
524 |
|
|
mod06s2$residg=gq(mod06s2$resid,n=5,cut=T)
|
525 |
|
|
mod06s2$presid=mod06s2$resid/mod06s2$ppt
|
526 |
|
|
|
527 |
|
|
for(l in c(F,T)){
|
528 |
|
|
## all months
|
529 |
|
|
xyplot(pred~ppt,groups=gelev,data=mod06s2,
|
530 |
|
|
par.settings = list(superpose.symbol = list(col=bgyr(3),pch=16,cex=.75)),auto.key=list(space="right",title="Station Elevation"),
|
531 |
|
|
scales=list(log=l),
|
532 |
|
|
ylab="Predicted Mean Monthly Precipitation (mm)",xlab="Observed Mean Monthly Precipitation (mm)",main="Predicted vs. Observed for Simple Model",
|
533 |
|
|
sub="Red line is y=x")+
|
534 |
|
|
layer(panel.abline(0,1,col="red"))
|
535 |
|
|
|
536 |
|
|
## month by month
|
537 |
|
|
print(xyplot(pred~ppt|month,groups=gelev,data=mod06s2,
|
538 |
|
|
par.settings = list(superpose.symbol = list(col=bgyr(3),pch=16,cex=.75)),auto.key=list(space="right",title="Station Elevation"),
|
539 |
|
|
scales=list(log=l),
|
540 |
|
|
ylab="Predicted Mean Monthly Precipitation (mm)",xlab="Observed Mean Monthly Precipitation (mm)",main="Predicted vs. Observed for Simple Model",
|
541 |
|
|
sub="Red line is y=x")+
|
542 |
|
|
layer(panel.abline(0,1,col="red"))
|
543 |
|
|
)}
|
544 |
|
|
|
545 |
|
|
## residuals by month
|
546 |
|
|
xyplot(lat~lon|month,group=residg,data=mod06s2,
|
547 |
|
|
par.settings = list(superpose.symbol = list(pch =16, col=bgyr(5),cex=.5)),
|
548 |
|
|
auto.key=list(space="right",title="Residuals"),
|
549 |
|
|
main="Spatial plot of monthly residuals")+
|
550 |
|
|
layer(sp.lines(roi_geo, lwd=1.2, col='black'))
|
551 |
|
|
|
552 |
|
|
|
553 |
|
|
dev.off()
|
554 |
|
|
|
555 |
|
|
|
556 |
|
|
|
557 |
|
|
|
558 |
|
|
|
559 |
|
|
|
560 |
|
|
|
561 |
|
|
|
562 |
|
|
|
563 |
|
|
|
564 |
|
|
load("data/modis/pointsummary.Rdata")
|
565 |
|
|
|
566 |
|
|
|
567 |
|
|
dsl=melt(ds,id.vars=c("id","date","ppt","lon","lat"),measure.vars= c("Cloud_Water_Path","Cloud_Effective_Radius","Cloud_Optical_Thickness"))
|
568 |
|
|
|
569 |
|
|
dsl=dsl[!is.nan(dsl$value),]
|
570 |
|
|
|
571 |
|
|
|
572 |
|
|
|
573 |
|
|
|
574 |
|
|
####
|
575 |
|
|
## mean annual precip
|
576 |
|
|
dp=d[d$variable=="ppt",]
|
577 |
|
|
dp$year=format(dp$date,"%Y")
|
578 |
|
|
dm=tapply(dp$value,list(id=dp$id,year=dp$year),sum,na.rm=T)
|
579 |
|
|
dms=apply(dm,1,mean,na.rm=T)
|
580 |
|
|
dms=data.frame(id=names(dms),ppt=dms/10)
|
581 |
|
|
|
582 |
|
|
dslm=tapply(dsl$value,list(id=dsl$id,variable=dsl$variable),mean,na.rm=T)
|
583 |
|
|
dslm=data.frame(id=rownames(dslm),dslm)
|
584 |
|
|
|
585 |
|
|
dms=merge(dms,dslm)
|
586 |
|
|
dmsl=melt(dms,id.vars=c("id","ppt"))
|
587 |
|
|
|
588 |
|
|
summary(lm(ppt~Cloud_Effective_Radius,data=dms))
|
589 |
|
|
summary(lm(ppt~Cloud_Water_Path,data=dms))
|
590 |
|
|
summary(lm(ppt~Cloud_Optical_Thickness,data=dms))
|
591 |
|
|
summary(lm(ppt~Cloud_Effective_Radius+Cloud_Water_Path+Cloud_Optical_Thickness,data=dms))
|
592 |
|
|
|
593 |
|
|
|
594 |
|
|
#### draw some plots
|
595 |
|
|
#pdf("output/MOD06_summary.pdf",width=11,height=8.5)
|
596 |
|
|
png("output/MOD06_summary_%d.png",width=1024,height=780)
|
597 |
|
|
|
598 |
|
|
## daily data
|
599 |
|
|
xyplot(value~ppt/10|variable,data=dsl,
|
600 |
|
|
scales=list(relation="free"),type=c("p","r"),
|
601 |
|
|
pch=16,cex=.5,layout=c(3,1))
|
602 |
|
|
|
603 |
|
|
|
604 |
|
|
densityplot(~value|variable,groups=cut(dsl$ppt,c(0,50,100,500)),data=dsl,auto.key=T,
|
605 |
|
|
scales=list(relation="free"),plot.points=F)
|
606 |
|
|
|
607 |
|
|
## annual means
|
608 |
|
|
|
609 |
|
|
xyplot(value~ppt|variable,data=dmsl,
|
610 |
|
|
scales=list(relation="free"),type=c("p","r"),pch=16,cex=0.5,layout=c(3,1),
|
611 |
|
|
xlab="Mean Annual Precipitation (mm)",ylab="Mean value")
|
612 |
|
|
|
613 |
|
|
densityplot(~value|variable,groups=cut(dsl$ppt,c(0,50,100,500)),data=dmsl,auto.key=T,
|
614 |
|
|
scales=list(relation="free"),plot.points=F)
|
615 |
|
|
|
616 |
|
|
|
617 |
|
|
## plot some swaths
|
618 |
|
|
|
619 |
|
|
nc1=raster(fs$path[3],varname="Cloud_Effective_Radius")
|
620 |
|
|
nc2=raster(fs$path[4],varname="Cloud_Effective_Radius")
|
621 |
|
|
nc3=raster(fs$path[5],varname="Cloud_Effective_Radius")
|
622 |
|
|
|
623 |
|
|
nc1[nc1<=0]=NA
|
624 |
|
|
nc2[nc2<=0]=NA
|
625 |
|
|
nc3[nc3<=0]=NA
|
626 |
|
|
|
627 |
|
|
plot(roi)
|
628 |
|
|
plot(nc3)
|
629 |
|
|
|
630 |
|
|
plot(nc1,add=T)
|
631 |
|
|
plot(nc2,add=T)
|
632 |
|
|
|
633 |
|
|
|
634 |
|
|
dev.off()
|
635 |
|
|
|
636 |
|
|
|
637 |
165c04fb
|
Adam M. Wilson
|
|
638 |
|
|
|
639 |
|
|
|
640 |
|
|
|
641 |
|
|
|
642 |
|
|
|
643 |
|
|
####################
|
644 |
|
|
#################### OLD JUNK BELOW!
|
645 |
|
|
####################
|
646 |
|
|
|
647 |
|
|
|
648 |
|
|
#levelplot(cer)#+points(x,y,data=dm2@data)
|
649 |
|
|
|
650 |
|
|
### extract MOD06 data for each station
|
651 |
|
|
stcer=extract(cer,dm2,fun=mean);colnames(stcer)=paste("cer_mean_",as.numeric(format(as.Date(cer@z$Date),"%m")),sep="")
|
652 |
|
|
stcerp=extract(cerp,dm2,fun=mean);colnames(stcerp)=paste("cerp_mean_",as.numeric(format(as.Date(cerp@z$Date),"%m")),sep="")
|
653 |
|
|
stcer20=extract(cer20,dm2,fun=mean);colnames(stcer20)=paste("cer20_mean_",as.numeric(format(as.Date(cer20@z$Date),"%m")),sep="")
|
654 |
|
|
stcot=extract(cot,dm2);colnames(stcot)=paste("cot_mean_",as.numeric(format(as.Date(cot@z$Date),"%m")),sep="")
|
655 |
|
|
stcld=extract(cld,dm2);colnames(stcld)=paste("cld_mean_",as.numeric(format(as.Date(cld@z$Date),"%m")),sep="")
|
656 |
|
|
stdem=extract(dem,dm2)
|
657 |
|
|
### generate new design matrix
|
658 |
|
|
mod06=cbind.data.frame(station=dm$station,stcer,stcerp,stcot,stcld,stcer20)
|
659 |
|
|
mod06l=melt(mod06,id.vars=c("station"));colnames(mod06l)[grep("value",colnames(mod06l))]="mod06"
|
660 |
|
|
mod06l[,c("variable","moment","month")]=do.call(rbind,strsplit(as.character(mod06l$variable),"_"))
|
661 |
|
|
mod06l=unique(mod06l)
|
662 |
|
|
mod06l=cast(mod06l,station+moment+month~variable,value="mod06")
|
663 |
|
|
mod06l=merge(dm2@data,mod06l,by=c("station","month"))
|
664 |
|
|
mod06l=mod06l[!is.na(mod06l$cer),]
|
665 |
|
|
|
666 |
|
|
mod06l=mod06l[order(mod06l$month),]
|
667 |
|
|
mod06l$lppt=log(mod06l$ppt+1)
|
668 |
|
|
|
669 |
|
|
#xyplot(latitude~longitude|as.factor(month),groups=cut(mod06l$ppt,breaks=quantile(mod06l$ppt,seq(0,1,len=10))),data=mod06l,auto.key=T,col=grey(seq(0,1,len=10)),pch=16,cex=.5)
|
670 |
|
|
#plot(cer)
|