Project

General

Profile

« Previous | Next » 

Revision b9fe1b70

Added by Jim Regetz over 12 years ago

  • ID b9fe1b70be9322fb3f1fdbf5297be94fcd5e9362

renamed script to multiscalesmooth.R

View differences:

terrain/research/oregon/arcgis/v2/multiscalesmooth.R
1
# Multiscale raster smoother function designed for use with noisy DEMs.
2
# Original algorithm and AML implementation by John Gallant. Translation
3
# to R (relying on raster package functionality) by Jim Regetz, based on
4
# AML script 'multiscalesmooth9a_clean.aml'.
5
#
6
# Jim Regetz
7
# NCEAS
8
# Created on 22-Mar-2012
9

  
10
library(raster)
11

  
12
multiscalesmooth <- function(ingrid, sd=0.0001, alpha=0.05, bbox) {
13
    # ingrid: RasterLayer to smooth
14
    # sd: numeric constant or RasterLayer
15
    # alpha: alpha level for chi-square critical value
16
    # bbox: optional extent object used to subset ingrid
17

  
18
    # subset ingrid if desired
19
    if (!missing(bbox)) {
20
        ingrid <- crop(ingrid, bbox)
21
    }
22

  
23
    # set number of aggregation levels and neighborhood size
24
    NUM.LEVELS <- 4
25
    NUM.CELLS <- 3
26

  
27
    # expand grid to accommodate integer number of cells at coarsest
28
    # level, by adding roungly equal number of cells on either side
29
    # (with one extra on top/right if an odd number of cells is needed)
30
    max.size <- NUM.CELLS^NUM.LEVELS
31
    addx <- if (0 < (extra<-ncol(ingrid)%%max.size)) {
32
            (max.size-extra)/2
33
        } else {
34
            0
35
        }
36
    addy <- if (0 < (extra<-nrow(ingrid)%%max.size)) {
37
            (max.size-extra)/2
38
        } else {
39
            0
40
        }
41
    full.extent <- extent(
42
        xmin(ingrid) - floor(addx) * xres(ingrid),
43
        xmax(ingrid) + ceiling(addx) * xres(ingrid),
44
        ymin(ingrid) - floor(addy) * yres(ingrid),
45
        ymax(ingrid) + ceiling(addy) * yres(ingrid)
46
        )
47

  
48
    # create grids
49

  
50
    # create lists to hold the series of successively coarsened grids of
51
    # values and variances, respectively; the first element of each is
52
    # the grid at the original input resolution
53
    # ...insert initial grid of values, but expanded to full extent
54
    z <- list(expand(ingrid, full.extent))
55
    # ...insert initial grid of variances
56
    if (is.numeric(sd) && length(sd)==1) {
57
        v <- list(calc(z[[1]], function(x) ifelse(!is.na(x), sd^2, NA)))
58
    } else if (class(sd)=="RasterLayer") {
59
        if (identical(extent(sd), extent(ingrid))) {
60
            v <- list(overlay(z[[1]], sd, fun=function(z, sd)
61
                ifelse(!is.na(z), sd^2, NA)))
62
        } else {
63
            stop("sd raster extent differs from ingrid extent")
64
        }
65
    } else {
66
        stop("sd must be a single number or a RasterLayer")
67
    }
68

  
69
    # set initial "group variance" to individual msmt variance (noise)
70
    v.g = v[[1]]
71
    # weights for aggregation, based on total variance
72
    w <- calc(v[[1]], function(x) ifelse(is.na(x), 0, 1/x))
73
    # squared weights
74
    wsq = w^2
75
    # effective number of measurements
76
    n <- calc(z[[1]], function(x) ifelse(!is.na(x), 1, 0))
77

  
78
    # aggregate to broader scales
79
    for (i in 1+seq.int(NUM.LEVELS)) {
80

  
81
        message("Aggregate from ", i-1, " to ", i)
82

  
83
        # make copies of previous (finer scale) grids
84
        v.g.prev <- v.g
85
        w.prev <- w
86
        wsq.prev <- wsq
87
        n.prev <- n
88

  
89
        # calc neighborhood weights, num cells, effective num cells
90
        w <- aggregate(w.prev, 3, sum)
91
        wsq <- aggregate(wsq.prev, 3, sum)
92
        n <- aggregate(n.prev, 3, sum)
93
        n.eff <- w^2 / wsq
94
        # calc variance-weighted neighborhood mean
95
        z[[i]] <- aggregate(w.prev * z[[i-1]], 3, sum) / w
96
        # calc between-cell variance, taken over neighborhood
97
        zdiff <- z[[i-1]] - disaggregate(z[[i]], 3)
98
        v.bg <- aggregate(w.prev * zdiff^2, 3, sum) / w
99
        # calc wtd avg of within-cell variance, taken over neighborhood
100
        if (i==2) {
101
            v.wg <- n - n # zero, but with correct window and cell size
102
        } else {
103
            v.wg <- aggregate(w.prev * v.g.prev, 3, sum) / w
104
        }
105
        # calc total group variance
106
        # ~ total variance of cell values in the underlying neighborhood
107
        v.g <- v.bg + v.wg
108
        # calc variance of the mean for the neighborhood
109
        v.m <- 1 / w
110
        # calc mean noise variance (mean of finer scale variances)
111
        mv <- n / w
112

  
113
        # calc chisq critical values
114
        chisq <- calc(n.eff, function(n) qchisq(alpha, n-1,
115
            lower=FALSE)/(n-1))
116
        # set coarsened cell variances: if group variance is small
117
        # relative to noise variance, use variance of the mean instead
118
        # of group variance
119
        v[[i]] <- overlay(v.g, chisq, mv, v.m,
120
            fun=function(v.g, chisq, mv, v.m) ifelse(v.g/chisq < mv, v.m, v.g))
121

  
122
    }
123

  
124
    # get arbitrarily large value to fill null variance cells
125
    bigvar <- cellStats(v[[1]], max) * 10
126

  
127
    # prep for refinement phase
128
    z.smooth <- z[[NUM.LEVELS+1]]
129
    v.smooth <- v[[NUM.LEVELS+1]]
130
    # create weight matrix equivalent to ArcGIS circle with radius 2
131
    circle2 <- matrix(c(0,0,1,0,0,
132
                        0,1,1,1,0,
133
                        1,1,1,1,1,
134
                        0,1,1,1,0,
135
                        0,0,1,0,0), nrow=5)
136
    circle2[circle2==0] <- NA
137

  
138
    # refine, smooth, and combine each layer in turn
139
    for (j in 1+rev(seq.int(NUM.LEVELS))) {
140

  
141
        message("Refining from ", j, " to ", j-1)
142

  
143
        # create smoothed higher resolution versions of z and v
144
        zs <- focal(disaggregate(z.smooth, 3), w=circle2, fun=mean,
145
            pad=TRUE, padValue=NA, na.rm=TRUE)
146
        vs <- focal(disaggregate(v.smooth, 3), w=circle2, fun=mean,
147
            pad=TRUE, padValue=NA, na.rm=TRUE)
148

  
149
        # create no-null version of finer z and v
150
        z_c <- calc(z[[j-1]], function(x) ifelse(is.na(x), 0, x))
151
        v_c <- calc(v[[j-1]], function(x) ifelse(is.na(x), bigvar, x))
152

  
153
        # explicitly clean up, in case it helps
154
        z[[j-1]] <- NULL
155
        v[[j-1]] <- NULL
156

  
157
        # combine two values using least variance
158
        z.smooth <- (z_c/v_c + zs/vs ) / (1/v_c + 1/vs)
159
        v.smooth <- 1 / (1/v_c + 1/vs)
160

  
161
    }
162

  
163
    result <- crop(stack(z.smooth, v.smooth, extent(ingrid))
164
    layerNames(result) <- c("zs", "vs")
165
    return(result)
166

  
167
}
terrain/research/oregon/arcgis/v2/multiscalesmooth9a_clean.R
1
# Multiscale raster smoother function designed for use with noisy DEMs.
2
# Original algorithm and AML implementation by John Gallant. Translation
3
# to R (relying on raster package functionality) by Jim Regetz, based on
4
# AML script 'multiscalesmooth9a_clean.aml'.
5
#
6
# Jim Regetz
7
# NCEAS
8
# Created on 22-Mar-2012
9

  
10
library(raster)
11

  
12
multiscalesmooth <- function(ingrid, sd=0.0001, alpha=0.05, bbox) {
13
    # ingrid: RasterLayer to smooth
14
    # sd: numeric constant or RasterLayer
15
    # alpha: alpha level for chi-square critical value
16
    # bbox: optional extent object used to subset ingrid
17

  
18
    # subset ingrid if desired
19
    if (!missing(bbox)) {
20
        ingrid <- crop(ingrid, bbox)
21
    }
22

  
23
    # set number of aggregation levels and neighborhood size
24
    NUM.LEVELS <- 4
25
    NUM.CELLS <- 3
26

  
27
    # expand grid to accommodate integer number of cells at coarsest
28
    # level, by adding roungly equal number of cells on either side
29
    # (with one extra on top/right if an odd number of cells is needed)
30
    max.size <- NUM.CELLS^NUM.LEVELS
31
    addx <- if (0 < (extra<-ncol(ingrid)%%max.size)) {
32
            (max.size-extra)/2
33
        } else {
34
            0
35
        }
36
    addy <- if (0 < (extra<-nrow(ingrid)%%max.size)) {
37
            (max.size-extra)/2
38
        } else {
39
            0
40
        }
41
    full.extent <- extent(
42
        xmin(ingrid) - floor(addx) * xres(ingrid),
43
        xmax(ingrid) + ceiling(addx) * xres(ingrid),
44
        ymin(ingrid) - floor(addy) * yres(ingrid),
45
        ymax(ingrid) + ceiling(addy) * yres(ingrid)
46
        )
47

  
48
    # create grids
49

  
50
    # create lists to hold the series of successively coarsened grids of
51
    # values and variances, respectively; the first element of each is
52
    # the grid at the original input resolution
53
    # ...insert initial grid of values, but expanded to full extent
54
    z <- list(expand(ingrid, full.extent))
55
    # ...insert initial grid of variances
56
    if (is.numeric(sd) && length(sd)==1) {
57
        v <- list(calc(z[[1]], function(x) ifelse(!is.na(x), sd^2, NA)))
58
    } else if (class(sd)=="RasterLayer") {
59
        if (identical(extent(sd), extent(ingrid))) {
60
            v <- list(overlay(z[[1]], sd, fun=function(z, sd)
61
                ifelse(!is.na(z), sd^2, NA)))
62
        } else {
63
            stop("sd raster extent differs from ingrid extent")
64
        }
65
    } else {
66
        stop("sd must be a single number or a RasterLayer")
67
    }
68

  
69
    # set initial "group variance" to individual msmt variance (noise)
70
    v.g = v[[1]]
71
    # weights for aggregation, based on total variance
72
    w <- calc(v[[1]], function(x) ifelse(is.na(x), 0, 1/x))
73
    # squared weights
74
    wsq = w^2
75
    # effective number of measurements
76
    n <- calc(z[[1]], function(x) ifelse(!is.na(x), 1, 0))
77

  
78
    # aggregate to broader scales
79
    for (i in 1+seq.int(NUM.LEVELS)) {
80

  
81
        message("Aggregate from ", i-1, " to ", i)
82

  
83
        # make copies of previous (finer scale) grids
84
        v.g.prev <- v.g
85
        w.prev <- w
86
        wsq.prev <- wsq
87
        n.prev <- n
88

  
89
        # calc neighborhood weights, num cells, effective num cells
90
        w <- aggregate(w.prev, 3, sum)
91
        wsq <- aggregate(wsq.prev, 3, sum)
92
        n <- aggregate(n.prev, 3, sum)
93
        n.eff <- w^2 / wsq
94
        # calc variance-weighted neighborhood mean
95
        z[[i]] <- aggregate(w.prev * z[[i-1]], 3, sum) / w
96
        # calc between-cell variance, taken over neighborhood
97
        zdiff <- z[[i-1]] - disaggregate(z[[i]], 3)
98
        v.bg <- aggregate(w.prev * zdiff^2, 3, sum) / w
99
        # calc wtd avg of within-cell variance, taken over neighborhood
100
        if (i==2) {
101
            v.wg <- n - n # zero, but with correct window and cell size
102
        } else {
103
            v.wg <- aggregate(w.prev * v.g.prev, 3, sum) / w
104
        }
105
        # calc total group variance
106
        # ~ total variance of cell values in the underlying neighborhood
107
        v.g <- v.bg + v.wg
108
        # calc variance of the mean for the neighborhood
109
        v.m <- 1 / w
110
        # calc mean noise variance (mean of finer scale variances)
111
        mv <- n / w
112

  
113
        # calc chisq critical values
114
        chisq <- calc(n.eff, function(n) qchisq(alpha, n-1,
115
            lower=FALSE)/(n-1))
116
        # set coarsened cell variances: if group variance is small
117
        # relative to noise variance, use variance of the mean instead
118
        # of group variance
119
        v[[i]] <- overlay(v.g, chisq, mv, v.m,
120
            fun=function(v.g, chisq, mv, v.m) ifelse(v.g/chisq < mv, v.m, v.g))
121

  
122
    }
123

  
124
    # get arbitrarily large value to fill null variance cells
125
    bigvar <- cellStats(v[[1]], max) * 10
126

  
127
    # prep for refinement phase
128
    z.smooth <- z[[NUM.LEVELS+1]]
129
    v.smooth <- v[[NUM.LEVELS+1]]
130
    # create weight matrix equivalent to ArcGIS circle with radius 2
131
    circle2 <- matrix(c(0,0,1,0,0,
132
                        0,1,1,1,0,
133
                        1,1,1,1,1,
134
                        0,1,1,1,0,
135
                        0,0,1,0,0), nrow=5)
136
    circle2[circle2==0] <- NA
137

  
138
    # refine, smooth, and combine each layer in turn
139
    for (j in 1+rev(seq.int(NUM.LEVELS))) {
140

  
141
        message("Refining from ", j, " to ", j-1)
142

  
143
        # create smoothed higher resolution versions of z and v
144
        zs <- focal(disaggregate(z.smooth, 3), w=circle2, fun=mean,
145
            pad=TRUE, padValue=NA, na.rm=TRUE)
146
        vs <- focal(disaggregate(v.smooth, 3), w=circle2, fun=mean,
147
            pad=TRUE, padValue=NA, na.rm=TRUE)
148

  
149
        # create no-null version of finer z and v
150
        z_c <- calc(z[[j-1]], function(x) ifelse(is.na(x), 0, x))
151
        v_c <- calc(v[[j-1]], function(x) ifelse(is.na(x), bigvar, x))
152

  
153
        # explicitly clean up, in case it helps
154
        z[[j-1]] <- NULL
155
        v[[j-1]] <- NULL
156

  
157
        # combine two values using least variance
158
        z.smooth <- (z_c/v_c + zs/vs ) / (1/v_c + 1/vs)
159
        v.smooth <- 1 / (1/v_c + 1/vs)
160

  
161
    }
162

  
163
    result <- crop(stack(z.smooth, v.smooth, extent(ingrid))
164
    layerNames(result) <- c("zs", "vs")
165
    return(result)
166

  
167
}

Also available in: Unified diff