Project

General

Profile

« Previous | Next » 

Revision ba485f60

Added by Benoit Parmentier over 11 years ago

raster prediction script, validation call for monthly and daily hold out and outputs objects

View differences:

climate/research/oregon/interpolation/GAM_fusion_analysis_raster_prediction_multisampling.R
125 125
  
126 126
  ###################### START OF THE SCRIPT ########################
127 127
   
128
  #This should not be set here...? master script, modify for precip
128 129
  if (var=="TMAX"){
129
    y_var_name<-"dailyTmax"                                       
130
    y_var_name<-"dailyTmax"
131
    y_var_month<-"TMax"
130 132
  }
131
  
132 133
  if (var=="TMIN"){
133
    y_var_name<-"dailyTmin"                                       
134
    y_var_name<-"dailyTmin"
135
    y_var_month <-"TMin"
134 136
  }
135 137
  
136 138
  ################# CREATE LOG FILE #####################
......
329 331
  
330 332
  ############### NOW RUN VALIDATION #########################
331 333
  #SIMPLIFY THIS PART: one call
332
  
333
  #list_tmp<-vector("list",length(method_mod_obj))
334
  #for (i in 1:length(method_mod_obj)){
335
  #  tmp<-method_mod_obj[[i]][[y_var_name]]  #y_var_name is the variable predicted (dailyTmax or dailyTmin)
336
  #  list_tmp[[i]]<-tmp
337
  #}
338
  #rast_day_yearlist<-list_tmp #list of predicted images over full year...
339
  
340
  list_data_v <- extract_list_from_list_obj(method_mod_obj,"data_v")
341
  list_data_s <- extract_list_from_list_obj(method_mod_obj,"data_s")
342
  rast_day_yearlist <- extract_list_from_list_obj(method_mod_obj,y_var_name) #list_tmp #list of predicted images over full year...
343
  list_sampling_dat <- extract_list_from_list_obj(method_mod_obj,"sampling_dat")
344
  
334
      
345 335
  cat("Validation step:",file=log_fname,sep="\n", append=TRUE)
346 336
  t1<-proc.time()
347 337
  cat(paste("Local Date and Time: ",as.character(Sys.time()),sep=""),
348 338
      file=log_fname,sep="\n")
349 339
  
350
  multi_time_scale <- FALSE
351
  #list_param_validation<-list(i,rast_day_yearlist,method_mod_obj,y_var_name, multi_time_scale,out_prefix, out_path)
352
  #names(list_param_validation)<-c("list_index","rast_day_year_list","method_mod_obj","y_var_name","multi_time_scale","out_prefix", "out_path") #same names for any method
353
  #debug(calculate_accuracy_metrics)
354
  #test_val<-calculate_accuracy_metrics(1,list_param_validation)
355
  #list_param_validation<-list(i,rast_day_yearlist,method_mod_obj,y_var_name, multi_time_scale,out_prefix, out_path)
356
  #names(list_param_validation)<-c("list_index","rast_day_year_list","method_mod_obj","y_var_name","multi_time_scale","out_prefix", "out_path") #same names for any method
357
  
358
  list_param_validation<-list(i,rast_day_yearlist,list_data_v,list_data_s,list_sampling_dat,y_var_name, multi_time_scale,out_prefix, out_path)
359
  names(list_param_validation)<-c("list_index","rast_day_year_list",
360
                                  "list_data_v","list_data_s","list_sampling_dat","y_var_name","multi_time_scale","out_prefix", "out_path") #same names for any method
361
  debug(calculate_accuracy_metrics)
362
  test_val2 <-calculate_accuracy_metrics(1,list_param_validation)
363
  
364
  validation_mod_obj <-mclapply(1:length(method_mod_obj), list_param=list_param_validation, calculate_accuracy_metrics,mc.preschedule=FALSE,mc.cores = 9) 
365
  save(validation_mod_obj,file= file.path(out_path,paste(interpolation_method,"_validation_mod_obj_",y_var_name,out_prefix,".RData",sep="")))
366
  t2<-proc.time()-t1
367
  cat(as.character(t2),file=log_fname,sep="\n", append=TRUE)
368
  
340
  if (interpolation_method=="gam_daily" | interpolation_method=="kriging_daily" | interpolation_method=="gwr_daily"){
341
    multi_time_scale <- FALSE
342
    
343
    list_data_v <- extract_list_from_list_obj(method_mod_obj,"data_v")
344
    list_data_s <- extract_list_from_list_obj(method_mod_obj,"data_s")
345
    rast_day_yearlist <- extract_list_from_list_obj(method_mod_obj,y_var_name) #list_tmp #list of predicted images over full year...
346
    list_sampling_dat <- extract_list_from_list_obj(method_mod_obj,"sampling_dat")
347
    
348
    list_param_validation<-list(i,rast_day_yearlist,list_data_v,list_data_s,list_sampling_dat,y_var_name, multi_time_scale,out_prefix, out_path)
349
    names(list_param_validation)<-c("list_index","rast_day_year_list",
350
                                  "list_data_v","list_data_s","list_sampling_dat","y_ref","multi_time_scale","out_prefix", "out_path") #same names for any method
351
    #debug(calculate_accuracy_metrics)
352
    #test_val2 <-calculate_accuracy_metrics(1,list_param_validation)
353
  
354
    validation_mod_obj <-mclapply(1:length(method_mod_obj), list_param=list_param_validation, calculate_accuracy_metrics,mc.preschedule=FALSE,mc.cores = 9) 
355
    save(validation_mod_obj,file= file.path(out_path,paste(interpolation_method,"_validation_mod_obj_",y_var_name,out_prefix,".RData",sep="")))
356
    t2<-proc.time()-t1
357
    cat(as.character(t2),file=log_fname,sep="\n", append=TRUE)
358
  }
359
    
369 360
  ### Run monthly validation if multi-time scale methods and add information to daily...
370 361
  
371 362
  if (interpolation_method %in% c("gam_CAI","kriging_CAI","gwr_CAI","gam_fusion","kriging_fusion","gwr_fusion")){
372 363
    multi_time_scale <- TRUE
373
    list_param_validation_month <-list(i,clim_yearlist,clim_method_mod_obj,y_var_name, multi_time_scale ,out_prefix, out_path)
374
    names(list_param_validation_month)<-c("list_index","rast_day_year_list","method_mod_obj","y_var_name","multi_time_scale","out_prefix", "out_path") #same names for any method
364
    i<-1
365
    
366
    ## daily time scale
367
    list_data_v <- extract_list_from_list_obj(method_mod_obj,"data_v")
368
    list_data_s <- extract_list_from_list_obj(method_mod_obj,"data_s")
369
    rast_day_yearlist <- extract_list_from_list_obj(method_mod_obj,y_var_name) #list_tmp #list of predicted images over full year...
370
    list_sampling_dat <- extract_list_from_list_obj(method_mod_obj,"daily_dev_sampling_dat")
371
    
372
    list_param_validation<-list(i,rast_day_yearlist,list_data_v,list_data_s,list_sampling_dat,y_var_name, multi_time_scale,out_prefix, out_path)
373
    names(list_param_validation)<-c("list_index","rast_day_year_list",
374
                                    "list_data_v","list_data_s","list_sampling_dat","y_ref","multi_time_scale","out_prefix", "out_path") #same names for any method
375
    #debug(calculate_accuracy_metrics)
376
    #test_val2 <-calculate_accuracy_metrics(1,list_param_validation)
377
    
378
    validation_mod_obj <-mclapply(1:length(method_mod_obj), list_param=list_param_validation, calculate_accuracy_metrics,mc.preschedule=FALSE,mc.cores = 9) 
379
    save(validation_mod_obj,file= file.path(out_path,paste(interpolation_method,"_validation_mod_obj_",y_var_name,out_prefix,".RData",sep="")))
380
    
381
    ### monthly time scale
382
    list_data_v <- extract_list_from_list_obj(clim_method_mod_obj,"data_month_v") #extract monthly testing/validation dataset
383
    list_data_s <- extract_list_from_list_obj(clim_method_mod_obj,"data_month") #extract monthly training/fitting dataset
384
    rast_day_yearlist <- extract_list_from_list_obj(clim_method_mod_obj,"clim") #list_tmp #list of predicted images over full year at monthly time scale
385
    list_sampling_dat <- extract_list_from_list_obj(clim_method_mod_obj,"sampling_month_dat")
386
    
387
    #list_param_validation_month <-list(i,clim_yearlist,clim_method_mod_obj,y_var_name, multi_time_scale ,out_prefix, out_path)
388
    #names(list_param_validation_month)<-c("list_index","rast_day_year_list","method_mod_obj","y_var_name","multi_time_scale","out_prefix", "out_path") #same names for any method
389
    
390
    list_param_validation_month <-list(i,rast_day_yearlist,list_data_v,list_data_s,list_sampling_dat,y_var_month, multi_time_scale,out_prefix, out_path)
391
    names(list_param_validation_month)<-c("list_index","rast_day_year_list",
392
                                    "list_data_v","list_data_s","list_sampling_dat","y_ref","multi_time_scale","out_prefix", "out_path") #same names for any method
393
    #debug(calculate_accuracy_metrics)    
394
    #test_val2 <-calculate_accuracy_metrics(2,list_param_validation)
375 395
    
376 396
    validation_mod_month_obj <- mclapply(1:length(clim_method_mod_obj), list_param=list_param_validation_month, calculate_accuracy_metrics,mc.preschedule=FALSE,mc.cores = 9) 
377 397
    #test_val<-calculate_accuracy_metrics(1,list_param_validation)
378 398
    save(validation_mod_month_obj,file= file.path(out_path,paste(interpolation_method,"_validation_mod_month_obj_",y_var_name,out_prefix,".RData",sep="")))
379 399
  
400
    ##Create data.frame with validation and fit metrics for a full year/full numbe of runs
401
    tb_month_diagnostic_v<-extract_from_list_obj(validation_mod_month_obj,"metrics_v") 
402
    #tb_diagnostic_v contains accuracy metrics for models sample and proportion for every run...if full year then 365 rows maximum
403
    rownames(tb_month_diagnostic_v)<-NULL #remove row names
404
    tb_month_diagnostic_v$method_interp <- interpolation_method
405
    tb_month_diagnostic_s<-extract_from_list_obj(validation_mod_month_obj,"metrics_s")
406
    rownames(tb_month_diagnostic_s)<-NULL #remove row names
407
    tb_month_diagnostic_s$method_interp <- interpolation_method #add type of interpolation...out_prefix too??
380 408
    
381 409
  }
382 410
  #################### ASSESSMENT OF PREDICTIONS: PLOTS OF ACCURACY METRICS ###########
......
412 440
  #Will add more information to be returned
413 441
  
414 442
  if (interpolation_method %in% c("gam_CAI","kriging_CAI","gwr_CAI","gam_fusion","kriging_fusion","gwr_fusion")){
415
    raster_prediction_obj<-list(clim_method_mod_obj,method_mod_obj,validation_mod_obj,tb_diagnostic_v,
416
                                tb_diagnostic_s,summary_metrics_v,summary_month_metrics_v)
417
    names(raster_prediction_obj)<-c("clim_method_mod_obj","method_mod_obj","validation_mod_obj","tb_diagnostic_v",
418
                                    "tb_diagnostic_s","summary_metrics_v","summary_month_metrics_v")  
443
    raster_prediction_obj<-list(clim_method_mod_obj,method_mod_obj,validation_mod_obj,validation_mod_month_obj, tb_diagnostic_v,
444
                                tb_diagnostic_s,tb_month_diagnostic_v,tb_month_diagnostic_s,summary_metrics_v,summary_month_metrics_v)
445
    names(raster_prediction_obj)<-c("clim_method_mod_obj","method_mod_obj","validation_mod_obj","validation_mod_month_obj","tb_diagnostic_v",
446
                                    "tb_diagnostic_s","tb_month_diagnostic_v","tb_month_diagnostic_s","summary_metrics_v","summary_month_metrics_v")  
419 447
    save(raster_prediction_obj,file= file.path(out_path,paste("raster_prediction_obj_",interpolation_method,"_", y_var_name,out_prefix,".RData",sep="")))
420 448
    
421 449
  }

Also available in: Unified diff