Project

General

Profile

« Previous | Next » 

Revision bac85c93

Added by Benoit Parmentier about 9 years ago

clean up of assessment figure plotting called from part1

View differences:

climate/research/oregon/interpolation/global_run_scalingup_assessment_part2.R
5 5
#Analyses, figures, tables and data are also produced in the script.
6 6
#AUTHOR: Benoit Parmentier 
7 7
#CREATED ON: 03/23/2014  
8
#MODIFIED ON: 01/01/2016            
8
#MODIFIED ON: 01/02/2016            
9 9
#Version: 4
10 10
#PROJECT: Environmental Layers project     
11 11
#COMMENTS: analyses for run 10 global analyses,all regions 1500x4500km with additional tiles to increase overlap 
......
16 16

  
17 17
#################################################################################################
18 18

  
19
### Loading R library and packages        
20
#library used in the workflow production:
21
library(gtools)                              # loading some useful tools 
22
library(mgcv)                                # GAM package by Simon Wood
23
library(sp)                                  # Spatial pacakge with class definition by Bivand et al.
24
library(spdep)                               # Spatial pacakge with methods and spatial stat. by Bivand et al.
25
library(rgdal)                               # GDAL wrapper for R, spatial utilities
26
library(gstat)                               # Kriging and co-kriging by Pebesma et al.
27
library(fields)                              # NCAR Spatial Interpolation methods such as kriging, splines
28
library(raster)                              # Hijmans et al. package for raster processing
29
library(gdata)                               # various tools with xls reading, cbindX
30
library(rasterVis)                           # Raster plotting functions
31
library(parallel)                            # Parallelization of processes with multiple cores
32
library(maptools)                            # Tools and functions for sp and other spatial objects e.g. spCbind
33
library(maps)                                # Tools and data for spatial/geographic objects
34
library(reshape)                             # Change shape of object, summarize results 
35
library(plotrix)                             # Additional plotting functions
36
library(plyr)                                # Various tools including rbind.fill
37
library(spgwr)                               # GWR method
38
library(automap)                             # Kriging automatic fitting of variogram using gstat
39
library(rgeos)                               # Geometric, topologic library of functions
40
#RPostgreSQL                                 # Interface R and Postgres, not used in this script
41
library(gridExtra)
42
#Additional libraries not used in workflow
43
library(pgirmess)                            # Krusall Wallis test with mulitple options, Kruskalmc {pgirmess}  
44
library(colorRamps)
45
library(zoo)
46
library(xts)
19

  
47 20

  
48 21
#### FUNCTION USED IN SCRIPT
49 22

  
50
function_analyses_paper1 <-"contribution_of_covariates_paper_interpolation_functions_07182014.R" #first interp paper
51
function_analyses_paper2 <-"multi_timescales_paper_interpolation_functions_08132014.R"
52
function_global_run_assessment_part2 <- "global_run_scalingup_assessment_part2_functions_0923015.R"
23
#function_analyses_paper1 <-"contribution_of_covariates_paper_interpolation_functions_07182014.R" #first interp paper
24
#function_analyses_paper2 <-"multi_timescales_paper_interpolation_functions_08132014.R"
25
#function_global_run_assessment_part2 <- "global_run_scalingup_assessment_part2_functions_0923015.R"
53 26

  
54
load_obj <- function(f)
55
{
56
  env <- new.env()
57
  nm <- load(f, env)[1]
58
  env[[nm]]
59
}
60 27

  
61
create_dir_fun <- function(out_dir,out_suffix){
62
  if(!is.null(out_suffix)){
63
    out_name <- paste("output_",out_suffix,sep="")
64
    out_dir <- file.path(out_dir,out_name)
65
  }
66
  #create if does not exists
67
  if(!file.exists(out_dir)){
68
    dir.create(out_dir)
69
  }
70
  return(out_dir)
71
}
72 28

  
73 29

  
74 30
############################################
......
106 62
file_format <- ".rst" #PARAM 9
107 63
NA_value <- -9999 #PARAM10
108 64
NA_flag_val <- NA_value
109
#tile_size <- "1500x4500" #PARAM 11
110 65
multiple_region <- TRUE #PARAM 12
111 66
#region_name <- "world" #PARAM 13
112 67
countries_shp <-"/data/project/layers/commons/NEX_data/countries.shp" #PARAM 13, copy this on NEX too
113 68
plot_region <- TRUE
114 69
num_cores <- 6 #PARAM 14
115
reg_modified <- TRUE #PARAM 15
116 70
region_name <- c("reg4") #reference region to merge if necessary, if world all the regions are together #PARAM 16
117 71
#use previous files produced in step 1a and stored in a data.frame
118 72
df_assessment_files <- "df_assessment_files_reg4_1984_run_global_analyses_pred_12282015.txt" #PARAM 17
119 73
threshold_missing_day <- c(367,365,300,200) #PARM18
120 74

  
121
########################## START SCRIPT ##############################
122

  
75
list_param_run_assessment_plottingin_dir <- list(y_var_name, interpolation_method, out_suffix, 
76
                      out_dir, create_out_dir_param, mosaic_plot, proj_str, file_format, NA_value,
77
                      multiple_region, countries_shp, plot_region, num_cores, 
78
                      region_name, df_assessment_files, threshold_missing_day) 
123 79

  
124
####### PART 1: Read in data ########
80
names(list_param_run_assessment_plottingin_dir) <- c("y_var_name","interpolation_method","out_suffix", 
81
                      "out_dir","create_out_dir_param","mosaic_plot","proj_str","file_format","NA_value",
82
                      "multiple_region","countries_shp","plot_region","num_cores", 
83
                      "region_name","df_assessment_files","threshold_missing_day") 
125 84

  
126
if(create_out_dir_param==TRUE){
127
  out_dir <- create_dir_fun(out_dir,out_suffix)
128
  setwd(out_dir)
129
}else{
130
  setwd(out_dir) #use previoulsy defined directory
131
}
85
run_assessment_plotting_prediction_fun(list_param_run_assessment_plottingin_dir) 
132 86

  
133
setwd(out_dir)
134
#i <- year_predicted
135 87
run_assessment_plotting_prediction_fun <-function(list_param_run_assessment_plotting){
136 88
  
89
  ####
90
  #1) in_dir: input directory containing data tables and shapefiles for plotting #PARAM 0
91
  #2) y_var_name : variables being predicted e.g. dailyTmax #PARAM1
92
  #3) interpolation_method: method used #c("gam_CAI") #PARAM2
93
  #4) out_suffix: output suffix #PARAM3
94
  #5) out_dir  #
95
  #6) create_out_dir_param # FALSE #PARAM 5
96
  #7) mosaic_plot  #FALSE #PARAM6
97
  #8) proj_str # projection/coordinates system e.g. CRS_WGS84 #PARAM 8 #check this parameter
98
  #9) file_format #".rst" #PARAM 9
99
  #10) NA_value #-9999 #PARAM10
100
  #11) multiple_region  # <- TRUE #PARAM 12
101
  #12) countries_shp  #<- "world" #PARAM 13
102
  #13) plot_region  #<- TRUE
103
  #14) num_cores <- number of cores used # 6 #PARAM 14
104
  #16) region_name  #<- c("reg4"), world if full assessment #reference region to merge if necessary #PARAM 16
105
  #18) df_assessment_files  #PARAM 16
106
  #19) threshold_missing_day  #PARM18
107
  #
108
  
109
  ### Loading R library and packages        
110
  #library used in the workflow production:
111
  library(gtools)                              # loading some useful tools 
112
  library(mgcv)                                # GAM package by Simon Wood
113
  library(sp)                                  # Spatial pacakge with class definition by Bivand et al.
114
  library(spdep)                               # Spatial pacakge with methods and spatial stat. by Bivand et al.
115
  library(rgdal)                               # GDAL wrapper for R, spatial utilities
116
  library(gstat)                               # Kriging and co-kriging by Pebesma et al.
117
  library(fields)                              # NCAR Spatial Interpolation methods such as kriging, splines
118
  library(raster)                              # Hijmans et al. package for raster processing
119
  library(gdata)                               # various tools with xls reading, cbindX
120
  library(rasterVis)                           # Raster plotting functions
121
  library(parallel)                            # Parallelization of processes with multiple cores
122
  library(maptools)                            # Tools and functions for sp and other spatial objects e.g. spCbind
123
  library(maps)                                # Tools and data for spatial/geographic objects
124
  library(reshape)                             # Change shape of object, summarize results 
125
  library(plotrix)                             # Additional plotting functions
126
  library(plyr)                                # Various tools including rbind.fill
127
  library(spgwr)                               # GWR method
128
  library(automap)                             # Kriging automatic fitting of variogram using gstat
129
  library(rgeos)                               # Geometric, topologic library of functions
130
  #RPostgreSQL                                 # Interface R and Postgres, not used in this script
131
  library(gridExtra)
132
  #Additional libraries not used in workflow
133
  library(pgirmess)                            # Krusall Wallis test with mulitple options, Kruskalmc {pgirmess}  
134
  library(colorRamps)
135
  library(zoo)
136
  library(xts)
137
  
138
  ####### Function used in the script #######
139
  
140
  load_obj <- function(f){
141
    env <- new.env()
142
    nm <- load(f, env)[1]
143
    env[[nm]]
144
  }
145
  
146
  create_dir_fun <- function(out_dir,out_suffix){
147
    if(!is.null(out_suffix)){
148
      out_name <- paste("output_",out_suffix,sep="")
149
      out_dir <- file.path(out_dir,out_name)
150
    }
151
    #create if does not exists
152
    if(!file.exists(out_dir)){
153
      dir.create(out_dir)
154
    }
155
    return(out_dir)
156
  }
157
  
158
  #function_assessment_part2_functions <- "global_run_scalingup_assessment_part2_functions_0923015.R"
159
  #source(file.path(script_path,function_assessment_part2_functions)) #source all functions used in this script 
160

  
161
  ####### PARSE INPUT ARGUMENTS/PARAMETERS #####
162
  
137 163
  in_dir <- list_param_run_assessment_plotting$in_dir #PARAM 0
138 164
  y_var_name <- list_param_run_assessment_plotting$y_var_name #PARAM1
139 165
  interpolation_method <- list_param_run_assessment_plotting$interpolation_method #c("gam_CAI") #PARAM2
......
148 174
  countries_shp <- list_param_run_assessment_plotting$countries_shp #<- "world" #PARAM 13
149 175
  plot_region <- list_param_run_assessment_plotting$plot_region #<- TRUE
150 176
  num_cores <- list_param_run_assessment_plotting$num_cores # 6 #PARAM 14
151
  reg_modified <- list_param_run_assessment_plotting$reg_modified #<- TRUE #PARAM 15
152
  region <- list_param_run_assessment_plotting$region #<- c("reg4") #reference region to merge if necessary #PARAM 16
153 177
  region_name <- list_param_run_assessment_plotting$region_name #<- "world" #PARAM 13
154 178
  df_assessment_files <- list_param_run_assessment_plotting$df_assessment_files #PARAM 16
155 179
  threshold_missing_day <- list_param_run_assessment_plotting$threshold_missing_day #PARM18
156 180
 
157 181
  NA_flag_val <- NA_value
158
  
159
  #tile_size <- "1500x4500" #PARAM 11
160
  
182

  
161 183
  ##################### START SCRIPT #################
162 184
  
185
  ####### PART 1: Read in data ########
186

  
187
  if(create_out_dir_param==TRUE){
188
    out_dir <- create_dir_fun(out_dir,out_suffix)
189
    setwd(out_dir)
190
  }else{
191
    setwd(out_dir) #use previoulsy defined directory
192
  }
193

  
194
  setwd(out_dir)
195
  
196
  #i <- year_predicted
163 197
  ###Table 1: Average accuracy metrics
164 198
  ###Table 2: daily accuracy metrics for all tiles
165 199

  
......
216 250
  #list_shp_reg_files <- file.path("/data/project/layers/commons/NEX_data/",out_dir,
217 251
                                  #"shapefiles",basename(list_shp_reg_files))
218 252
  
219
  #table(summary_metrics_v$reg)
220
  #table(summary_metrics_v$reg)
221
  
222 253
  ### Potential function starts here:
223 254
  #function(in_dir,out_dir,list_shp_reg_files,title_str,region_name,num_cores,out_suffix,out_suffix)
224 255
  
......
226 257
  #can make this more general later on..should have this already in a local directory on Atlas or NEX!!!!
227 258
  
228 259
  #http://www.diva-gis.org/Data
229
  countries_shp <-"/data/project/layers/commons/NEX_data/countries.shp"
260
  #countries_shp <-"/data/project/layers/commons/NEX_data/countries.shp"
230 261
  path_to_shp <- dirname(countries_shp)
231 262
  layer_name <- sub(".shp","",basename(countries_shp))
232 263
  reg_layer <- readOGR(path_to_shp, layer_name)
......
306 337
  
307 338
  
308 339
  tb$tile_id <- factor(tb$tile_id, levels=unique(tb$tile_id))
309
  
310 340
  model_name <- as.character(unique(tb$pred_mod))
311 341
  
312
  
313 342
  ## Figure 2a
314
  
315 343
  for(i in  1:length(model_name)){
316 344
    
317 345
    res_pix <- 480
......
328 356
  }
329 357
  
330 358
  ## Figure 2b
331
  #wtih ylim and removing trailing...
359
  #with ylim and removing trailing...
332 360
  for(i in  1:length(model_name)){
333 361
    
334 362
    res_pix <- 480
......
370 398
  
371 399
  dev.off()
372 400
  
373
  
374 401
  ################ 
375 402
  ### Figure 4: plot predicted tiff for specific date per model
376 403
  
......
459 486
    png(filename=paste("Figure6_ac_metrics_map_centroids_tile_",model_name[i],"_",out_suffix,".png",sep=""),
460 487
        width=col_mfrow*res_pix,height=row_mfrow*res_pix)
461 488
    
462
    #plot(r_pred)  
463
    #plot(reg_layer)
464
    #plot(ac_mod1,cex=sqrt(ac_mod1$rmse),pch=1,add=T)
465
    #plot(ac_mod,cex=(ac_mod$rmse^2)/10,pch=1,col="red",add=T)
466
    
467 489
    #coordinates(ac_mod) <- ac_mod[,c("lon","lat")] 
468 490
    coordinates(ac_mod) <- ac_mod[,c("lon.x","lat.x")] #solve this later
469 491
    p_shp <- layer(sp.polygons(reg_layer, lwd=1, col='black'))
......
526 548
                                                                threshold_missing_day[i]))
527 549
    p1 <- p+p_shp
528 550
    try(print(p1)) #error raised if number of missing values below a threshold does not exist
529
    #plot(ac_mod1,cex=(ac_mod1$rmse1)*2,pch=1,add=T)
530
    #title(paste("Averrage RMSE per tile and by ",model_name[i]))
531
    
551

  
532 552
    dev.off()
533 553
  }
534 554
  
535 555
  ######################
536 556
  ### Figure 7: Number of predictions: daily and monthly
537 557
  
538
  #xyplot(rmse~pred_mod | tile_id,data=subset(as.data.frame(summary_metrics_v),
539
  #                                           pred_mod!="mod_kr"),type="b")
540
  
541
  #xyplot(n~pred_mod | tile_id,data=subset(as.data.frame(summary_metrics_v),
542
  #                                           pred_mod!="mod_kr"),type="h")
543
  
544
  #cor
545
  
546
  # 
547 558
  ## Figure 7a
548 559
  png(filename=paste("Figure7a_number_daily_predictions_per_models","_",out_suffix,".png",sep=""),
549 560
      width=col_mfrow*res_pix,height=row_mfrow*res_pix)
......
585 596
  #dev.off()
586 597
  #
587 598
  
588
  
589 599
  ##########################################################
590 600
  ##### Figure 8: Breaking down accuracy by regions!! #####
591 601
  
......
616 626
  dev.off()
617 627
  
618 628
  #####################################################
619
  #### Figure 9: plotting mosaics of regions ###########
620
  ## plot mosaics...
629
  #### Figure 9: plotting boxplot by year and regions ###########
621 630
  
622
  #First collect file names
623
  
624
  
625
  #names(lf_mosaics_reg) <- l_reg_name
626
  
627
  #This part should be automated...
628
  #plot Australia
629
  #lf_m <- lf_mosaics_reg[[2]]
630
  #out_dir_str <- out_dir
631
  #reg_name <- "reg6_1000x3000"
632
  #lapply()
633
  #list_param_plot_daily_mosaics <- list(lf_m=lf_m,reg_name=reg_name,out_dir_str=out_dir_str,out_suffix=out_suffix)
634
  #list_param_plot_daily_mosaics <- list(lf_m=lf_m,reg_name=reg_name,out_dir_str=out_dir_str,out_suffix=out_suffix,l_dates=day_to_mosaic)
635
  
636
  #lf_m_mask_reg4_1500x4500 <- mclapply(1:2,FUN=plot_daily_mosaics,list_param=list_param_plot_daily_mosaics,mc.preschedule=FALSE,mc.cores = 6)
637
  #debug(plot_daily_mosaics)
638
  #lf_m_mask_reg6_1000x3000 <- plot_daily_mosaics(1,list_param=list_param_plot_daily_mosaics)
639
  
640
  #lf_m_mask_reg6_1000x3000 <- mclapply(1:length(lf_m),FUN=plot_daily_mosaics,list_param=list_param_plot_daily_mosaics,mc.preschedule=FALSE,mc.cores = 10)
641
  
642
  
643
  ################## WORLD MOSAICS NEEDS MAJOR CLEAN UP OF CODE HERE
644
  ##make functions!!
645
  ###Combine mosaics with modified code from Alberto
646
  
647
  #use list from above!!
631
  ## Figure 8a
632
  res_pix <- 480
633
  col_mfrow <- 1
634
  row_mfrow <- 1
648 635
  
649
  # test_list <-list.files(path=file.path(out_dir,"mosaics"),    
650
  #            pattern=paste("^world_mosaics.*.tif$",sep=""), 
651
  # )
652
  # #world_mosaics_mod1_output1500x4500_km_20101105_run10_1500x4500_global_analyses_03112015.tif
653
  # 
654
  # #test_list<-lapply(1:30,FUN=function(i){lapply(1:x[[i]]},x=lf_mosaics_mask_reg)
655
  # #test_list<-unlist(test_list)
656
  # #mosaic_list_mean <- vector("list",length=1)
657
  # mosaic_list_mean <- test_list 
658
  # out_rastnames <- "world_test_mosaic_20100101"
659
  # out_path <- out_dir
660
  # 
661
  # list_param_mosaic<-list(mosaic_list_mean,out_path,out_rastnames,file_format,NA_flag_val,out_suffix)
662
  # names(list_param_mosaic)<-c("mosaic_list","out_path","out_rastnames","file_format","NA_flag_val","out_suffix")
663
  # #mean_m_list <-mclapply(1:12, list_param=list_param_mosaic, mosaic_m_raster_list,mc.preschedule=FALSE,mc.cores = 6) #This is the end bracket from mclapply(...) statement
664
  # 
665
  # lf <- mosaic_m_raster_list(1,list_param_mosaic)
666
  # 
667
  # debug(mosaic_m_raster_list)
668
  # mosaic_list<-list_param$mosaic_list
669
  # out_path<-list_param$out_path
670
  # out_names<-list_param$out_rastnames
671
  # file_format <- list_param$file_format
672
  # NA_flag_val <- list_param$NA_flag_val
673
  # out_suffix <- list_param$out_suffix
674
  
675
  ##Now mosaic for mean: should reorder files!!
676
  #out_rastnames_mean<-paste("_",lst_pat,"_","mean",out_suffix,sep="")
677
  #list_date_names<-c("jan","feb","mar","apr","may","jun","jul","aug","sep","oct","nov","dec")
678
  #mosaic_list<-split(tmp_str1,list_date_names)
679
  #new_list<-vector("list",length(mosaic_list))
680
  # for (i in 1:length(list_date_names)){
681
  #    j<-grep(list_date_names[i],mosaic_list,value=FALSE)
682
  #    names(mosaic_list)[j]<-list_date_names[i]
683
  #    new_list[i]<-mosaic_list[j]
684
  #  }
685
  #  mosaic_list_mean <-new_list #list ready for mosaicing
686
  #  out_rastnames_mean<-paste(list_date_names,out_rastnames_mean,sep="")
687
  
688
  ### Now mosaic tiles...Note that function could be improved to use less memory
689
  
690
  
691
  ################## PLOTTING WORLD MOSAICS ################
692
  
693
  #lf_world_pred <-list.files(path=file.path(out_dir,"mosaics"),    
694
  #           pattern=paste("^world_mosaics.*.tif$",sep=""),full.names=T) 
695
  
696
  lf_world_pred <-list.files(path=file.path(out_dir,"mosaics"),    
697
                             pattern=paste("^reg5.*.",".tif$",sep=""),full.names=T) 
698
  l_reg_name <- unique(df_tile_processed$reg)
699
  lf_world_pred <-list.files(path=file.path(out_dir,l_reg_name[[i]]),    
700
                             pattern=paste(".tif$",sep=""),full.names=T) 
701
  
702
  #mosaic_list_mean <- test_list 
703
  #out_rastnames <- "world_test_mosaic_20100101"
704
  #out_path <- out_dir
705
  
706
  #lf_world_pred <- list.files(pattern="world.*2010090.*.tif$")
707
  #lf_raster_fname <- list.files(pattern="world.*2010*.*02162015.tif$",full.names=T)
708
  lf_raster_fname <- lf_world_pred
709
  prefix_str <- "Figure10_clim_world_mosaics_day_"
710
  l_dates <-day_to_mosaic
711
  screenRast=FALSE
712
  list_param_plot_screen_raster <- list(lf_raster_fname,screenRast,l_dates,out_dir,prefix_str,out_suffix)
713
  names(list_param_plot_screen_raster) <- c("lf_raster_fname","screenRast","l_dates","out_dir_str","prefix_str","out_suffix_str")
714
  
715
  debug(plot_screen_raster_val)
716
  
717
  world_m_list1<- plot_screen_raster_val(1,list_param_plot_screen_raster)
718
  #world_m_list <- mclapply(11:30, list_param=list_param_plot_screen_raster, plot_screen_raster_val,mc.preschedule=FALSE,mc.cores = num_cores) #This is the end bracket from mclapply(...) statement
719
  world_m_list <- mclapply(1:length(l_dates), list_param=list_param_plot_screen_raster, plot_screen_raster_val,mc.preschedule=FALSE,mc.cores = num_cores) #This is the end bracket from mclapply(...) statement
720
  
721
  s_pred <- stack(lf_raster_fname)
722
  
723
  res_pix <- 1500
724
  col_mfrow <- 3 
725
  row_mfrow <- 2
726
  
727
  png(filename=paste("Figure10_levelplot_combined_",region_name,"_",out_suffix,".png",sep=""),
636
  png(filename=paste("Figure9a_boxplot_overall_separated_by_region_year_with_oultiers_",model_name[i],"_",out_suffix,".png",sep=""),
728 637
      width=col_mfrow*res_pix,height=row_mfrow*res_pix)
729 638
  
730
  levelplot(s_pred,layers=1:6,col.regions=rev(terrain.colors(255)),cex=4)
731
  
639
  p<- bwplot(rmse~pred_mod | reg, data=tb,
640
             main="RMSE per model and region over all tiles")
641
  print(p)
732 642
  dev.off()
733 643
  
734
  #   blues<- designer.colors(6, c( "blue", "white") )
735
  # reds <- designer.colors(6, c( "white","red")  )
736
  # colorTable<- c( blues[-6], reds)
737
  # breaks with a gap of 10 to 17 assigned the white color
738
  # brks<- c(seq( 1, 10,,6), seq( 17, 25,,6)) 
739
  # image.plot( x,y,z,breaks=brks, col=colorTable)
740
  #
644
  ## Figure 8b
645
  png(filename=paste("Figure8b_boxplot_overall_separated_by_region_year_scaling_",model_name[i],"_",out_suffix,".png",sep=""),
646
      width=col_mfrow*res_pix,height=row_mfrow*res_pix)
741 647
  
742
  #lf_world_mask_reg <- vector("list",length=length(lf_world_pred))
743
  #for(i in 1:length(lf_world_pred)){
744
  #
745
  #  lf_m <- lf_mosaics_reg[i]
746
  #  out_dir_str <- out_dir
747
  #reg_name <- paste(l_reg_name[i],"_",tile_size,sep="") #make this automatic
748
  #lapply()
749
  #  list_param_plot_daily_mosaics <- list(lf_m=lf_m,reg_name=tile_size,out_dir_str=out_dir_str,out_suffix=out_suffix,l_dates=day_to_mosaic)
750
  #lf_m_mask_reg4_1500x4500 <- mclapply(1:2,FUN=plot_daily_mosaics,list_param=list_param_plot_daily_mosaics,mc.preschedule=FALSE,mc.cores = 6)
751
  
752
  #lf_world_mask_reg[[i]] <- mclapply(1:length(lf_m),FUN=plot_daily_mosaics,list_param=list_param_plot_daily_mosaics,mc.preschedule=FALSE,mc.cores = 10)
753
  }
754

  
755
  ############# NEW MASK AND DATA
756
  ## Plot areas and day predicted as first check
757

  
758
  l_reg_name <- unique(df_tile_processed$reg)
759
  #(subset(df_tile_processed$reg == l_reg_name[i],date)
648
  boxplot(rmse~pred_mod,data=tb,ylim=c(0,5),outline=FALSE)#,names=tb$pred_mod)
649
  title("RMSE per model over all tiles")
650
  p<- bwplot(rmse~pred_mod | reg, data=tb,ylim=c(0,5),
651
             main="RMSE per model and region over all tiles")
652
  print(p)
653
  dev.off()
760 654

  
761
  for(i in 1:length(l_reg_name)){
762
    lf_world_pred<-list.files(path=file.path(out_dir,l_reg_name[[i]]),    
763
                            pattern=paste(".tif$",sep=""),full.names=T) 
764
  
765
    #mosaic_list_mean <- test_list 
766
    #out_rastnames <- "world_test_mosaic_20100101"
767
    #out_path <- out_dir
768
    
769
    #lf_world_pred <- list.files(pattern="world.*2010090.*.tif$")
770
    #lf_raster_fname <- list.files(pattern="world.*2010*.*02162015.tif$",full.names=T)
771
    lf_raster_fname <- lf_world_pred
772
    prefix_str <- paste("Figure10_",l_reg_name[i],sep="")
773
    
774
    l_dates <- basename(lf_raster_fname)
775
    tmp_name <- gsub(".tif","",l_dates)
776
    tmp_name <- gsub("gam_CAI_dailyTmax_predicted_mod1_0_1_","",tmp_name)
777
    #l_dates <- tmp_name
778
    l_dates <- paste(l_reg_name[i],"_",tmp_name,sep="")
779
    
780
    screenRast=TRUE
781
    list_param_plot_screen_raster <- list(lf_raster_fname,screenRast,l_dates,out_dir,prefix_str,out_suffix)
782
    names(list_param_plot_screen_raster) <- c("lf_raster_fname","screenRast","l_dates","out_dir_str","prefix_str","out_suffix_str")
783
    
784
    #undebug(plot_screen_raster_val)
785
    
786
    #world_m_list1<- plot_screen_raster_val(1,list_param_plot_screen_raster)
787
    #world_m_list <- mclapply(11:30, list_param=list_param_plot_screen_raster, plot_screen_raster_val,mc.preschedule=FALSE,mc.cores = num_cores) #This is the end bracket from mclapply(...) statement
788
    world_m_list <- mclapply(1:length(l_dates), list_param=list_param_plot_screen_raster, plot_screen_raster_val,mc.preschedule=FALSE,mc.cores = num_cores) #This is the end bracket from mclapply(...) statement
789
    
790
    #s_pred <- stack(lf_raster_fname)
791
    
792
    #res_pix <- 1500
793
    #col_mfrow <- 3 
794
    #row_mfrow <- 2
795
    
796
    #png(filename=paste("Figure10_levelplot_combined_",region_name,"_",out_suffix,".png",sep=""),
797
    #  width=col_mfrow*res_pix,height=row_mfrow*res_pix)
798
    
799
    #levelplot(s_pred,layers=1:6,col.regions=rev(terrain.colors(255)),cex=4)
800
    
801
    #dev.off()
802 655
}
803 656

  
804 657

  

Also available in: Unified diff