Revision bd5b6cd5
Added by Benoit Parmentier over 11 years ago
climate/research/oregon/interpolation/GAM_fusion_analysis_raster_prediction_multisampling.R | ||
---|---|---|
311 | 311 |
|
312 | 312 |
#################### ASSESSMENT OF PREDICTIONS: PLOTS OF ACCURACY METRICS ########### |
313 | 313 |
|
314 |
##Create data.frame with valiation metrics for a full year |
|
315 |
tb_diagnostic_v<-extract_from_list_obj(validation_mod_obj,"metrics_v") |
|
314 |
##Create data.frame with validation and fit metrics for a full year/full numbe of runs |
|
315 |
tb_diagnostic_v<-extract_from_list_obj(validation_mod_obj,"metrics_v") |
|
316 |
#tb_diagnostic_v contains accuracy metrics for models sample and proportion for every run...if full year then 365 rows maximum |
|
316 | 317 |
rownames(tb_diagnostic_v)<-NULL #remove row names |
318 |
tb_diagnostic_v$method_interp <- interpolation_method |
|
319 |
tb_diagnostic_s<-extract_from_list_obj(validation_mod_obj,"metrics_s") |
|
320 |
rownames(tb_diagnostic_s)<-NULL #remove row names |
|
321 |
tb_diagnostic_s$method_interp <- interpolation_method #add type of interpolation...out_prefix too?? |
|
317 | 322 |
|
318 | 323 |
#Call functions to create plots of metrics for validation dataset |
319 | 324 |
metric_names<-c("rmse","mae","me","r","m50") |
320 |
summary_metrics_v<- boxplot_from_tb(tb_diagnostic_v,metric_names,out_prefix,out_path) |
|
325 |
summary_metrics_v<- boxplot_from_tb(tb_diagnostic_v,metric_names,out_prefix,out_path) #if adding for fit need to change outprefix
|
|
321 | 326 |
names(summary_metrics_v)<-c("avg","median") |
322 | 327 |
summary_month_metrics_v<- boxplot_month_from_tb(tb_diagnostic_v,metric_names,out_prefix,out_path) |
323 | 328 |
|
... | ... | |
338 | 343 |
|
339 | 344 |
if (interpolation_method %in% c("gam_CAI","kriging_CAI","gwr_CAI","gam_fusion","kriging_fusion","gwr_fusion")){ |
340 | 345 |
raster_prediction_obj<-list(clim_method_mod_obj,method_mod_obj,validation_mod_obj,tb_diagnostic_v, |
341 |
summary_metrics_v,summary_month_metrics_v) |
|
346 |
tb_diagnostic_s,summary_metrics_v,summary_month_metrics_v)
|
|
342 | 347 |
names(raster_prediction_obj)<-c("clim_method_mod_obj","method_mod_obj","validation_mod_obj","tb_diagnostic_v", |
343 |
"summary_metrics_v","summary_month_metrics_v") |
|
348 |
"tb_diagnostic_s","summary_metrics_v","summary_month_metrics_v")
|
|
344 | 349 |
save(raster_prediction_obj,file= file.path(out_path,paste("raster_prediction_obj_",interpolation_method,"_", y_var_name,out_prefix,".RData",sep=""))) |
345 | 350 |
|
346 | 351 |
} |
... | ... | |
348 | 353 |
#use %in% instead of "|" operator |
349 | 354 |
if (interpolation_method=="gam_daily" | interpolation_method=="kriging_daily" | interpolation_method=="gwr_daily"){ |
350 | 355 |
raster_prediction_obj<-list(method_mod_obj,validation_mod_obj,tb_diagnostic_v, |
351 |
summary_metrics_v,summary_month_metrics_v) |
|
356 |
tb_diagnostic_s,summary_metrics_v,summary_month_metrics_v)
|
|
352 | 357 |
names(raster_prediction_obj)<-c("method_mod_obj","validation_mod_obj","tb_diagnostic_v", |
353 |
"summary_metrics_v","summary_month_metrics_v") |
|
358 |
"tb_diagnostic_s","summary_metrics_v","summary_month_metrics_v")
|
|
354 | 359 |
save(raster_prediction_obj,file= file.path(out_path,paste("raster_prediction_obj_",interpolation_method,"_", y_var_name,out_prefix,".RData",sep=""))) |
355 | 360 |
|
356 | 361 |
} |
Also available in: Unified diff
raster prediction script, adding recording of training metric fits for paper analyses