Project

General

Profile

Download (6.75 KB) Statistics
| Branch: | Revision:
1
#! /bin/R
2
### Script to download and process the NDP-026D station cloud dataset
3
setwd("~/acrobates/adamw/projects/interp/data/NDP026D")
4

    
5
library(multicore)
6
library(latticeExtra)
7
library(doMC)
8
library(raster)
9
library(rgdal)
10
## register parallel processing
11
registerDoMC(20)
12

    
13

    
14
## available here http://cdiac.ornl.gov/epubs/ndp/ndp026d/ndp026d.html
15

    
16

    
17
## Get station locations
18
system("wget -N -nd http://cdiac.ornl.gov/ftp/ndp026d/cat01/01_STID -P data/")
19
st=read.table("data/01_STID",skip=1)
20
colnames(st)=c("StaID","LAT","LON","ELEV","ny1","fy1","ly1","ny7","fy7","ly7","SDC","b5c")
21
st$lat=st$LAT/100
22
st$lon=st$LON/100
23
st$lon[st$lon>180]=st$lon[st$lon>180]-360
24

    
25
## download data
26
system("wget -N -nd ftp://cdiac.ornl.gov/pub/ndp026d/cat67_78/* -A '.tc.Z' -P data/")
27
system("gunzip data/*.Z")
28

    
29
## get monthly mean cloud amount MMCF
30
#system("wget -N -nd ftp://cdiac.ornl.gov/pub/ndp026d/cat08_09/* -A '.tc.Z' -P data/")
31
#system("gunzip data/*.Z")
32
#f121=c(6,6,6,7,6,7,6,2) #format 121
33
#c121=c("StaID","NobD","AvgDy","NobN","AvgNt","NobDN","AvgDN","Acode")
34
#cld=do.call(rbind.data.frame,lapply(sprintf("%02d",1:12),function(m) {
35
#  d=read.fwf(list.files("data",pattern=paste("MMCA.",m,".tc",sep=""),full=T),skip=1,widths=f162)
36
#  colnames(d)=c121
37
#  d$month=as.numeric(m)
38
#  return(d)}
39
#  ))
40

    
41
## define FWF widths
42
f162=c(5,5,4,7,7,7,4) #format 162
43
c162=c("StaID","YR","Nobs","Amt","Fq","AWP","NC")
44

    
45
## use monthly timeseries
46
cld=do.call(rbind.data.frame,mclapply(sprintf("%02d",1:12),function(m) {
47
  d=read.fwf(list.files("data",pattern=paste("MNYDC.",m,".tc",sep=""),full=T),skip=1,widths=f162)
48
  colnames(d)=c162
49
  d$month=as.numeric(m)
50
  print(m)
51
  return(d)}
52
  ))
53

    
54
## add lat/lon
55
cld[,c("lat","lon")]=st[match(cld$StaID,st$StaID),c("lat","lon")]
56

    
57
## drop missing values
58
cld$Amt[cld$Amt<0]=NA
59
cld$Fq[cld$Fq<0]=NA
60
cld$AWP[cld$AWP<0]=NA
61
cld$NC[cld$NC<0]=NA
62
cld=cld[cld$Nobs>0,]
63

    
64
## calculate means and sds
65
cldm=do.call(rbind.data.frame,by(cld,list(month=as.factor(cld$month),StaID=as.factor(cld$StaID)),function(x){
66
  data.frame(
67
             month=x$month[1],
68
             StaID=x$StaID[1],
69
             cld=mean(x$Amt[x$Nobs>10]/100,na.rm=T),
70
             cldsd=sd(x$Amt[x$Nobs>10]/100,na.rm=T))}))
71
cldm[,c("lat","lon")]=st[match(cldm$StaID,st$StaID),c("lat","lon")]
72

    
73
## means by year
74
cldy=do.call(rbind.data.frame,by(cld,list(year=as.factor(cld$YR),StaID=as.factor(cld$StaID)),function(x){
75
  data.frame(
76
             year=x$YR[1],
77
             StaID=x$StaID[1],
78
             cld=mean(x$Amt[x$Nobs>10]/100,na.rm=T),
79
             cldsd=sd(x$Amt[x$Nobs>10]/100,na.rm=T))}))
80
cldy[,c("lat","lon")]=st[match(cldy$StaID,st$StaID),c("lat","lon")]
81

    
82

    
83
#cldm=foreach(m=unique(cld$month),.combine='rbind')%:%
84
#  foreach(s=unique(cld$StaID),.combine="rbind") %dopar% {
85
#    x=cld[cld$month==m&cld$StaID==s,]
86
#    data.frame(
87
#               month=x$month[1],
88
#               StaID=x$StaID[1],
89
#               Amt=mean(x$Amt[x$Nobs>10],na.rm=T)/100)}
90
 
91

    
92
## write out the tables
93
write.csv(cldy,file="cldy.csv")
94
write.csv(cldm,file="cldm.csv")
95

    
96

    
97
##################
98
###
99
cldm=read.csv("cldm.csv")
100
cldy=read.csv("cldy.csv")
101

    
102

    
103
##make spatial object
104
cldms=cldm
105
coordinates(cldms)=c("lon","lat")
106
projection(cldms)=CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs")
107

    
108
#### Evaluate MOD35 Cloud data
109
mod35=brick("../modis/mod35/MOD35_h11v08.nc",varname="CLD01")
110
mod35sd=brick("../modis/mod35/MOD35_h11v08.nc",varname="CLD_sd")
111
projection(mod35)="+proj=sinu +lon_0=0 +x_0=0 +y_0=0 +a=6371007.181 +b=6371007.181 +units=m +no_defs"
112

    
113

    
114
### use data from google earth engine
115
mod35=brick("../modis/mod09/global_2009/")
116
mod09=raster("../modis/mod09/global_2009/MOD09_2009.tif")
117

    
118
n=100
119
at=seq(0,100,length=n)
120
colr=colorRampPalette(c("black","green","red"))
121
cols=colr(n)
122

    
123
levelplot(mod09,col.regions=cols,at=at)
124

    
125

    
126
cldms=spTransform(cldms,CRS(projection(mod35)))
127

    
128
mod35v=foreach(m=unique(cldm$month),.combine="rbind") %do% {
129
  dr=subset(mod35,subset=m);projection(dr)=projection(mod35)
130
  dr2=subset(mod35sd,subset=m);projection(dr2)=projection(mod35)
131
  ds=cldms[cldms$month==m,]
132
  ds$mod35=unlist(extract(dr,ds,buffer=10,fun=mean,na.rm=T))
133
#  ds$mod35sd=extract(dr2,ds,buffer=10)
134
  print(m)
135
  return(ds@data[!is.na(ds$mod35),])}
136

    
137
## month factors
138
cldm$month2=factor(cldm$month,labels=month.name)
139
## add a color key
140
breaks=seq(0,100,by=25)
141
cldm$cut=cut(cldm$cld,breaks)
142
cp=colorRampPalette(c("blue","orange","red"))
143
cols=cp(length(at))
144

    
145
## read in global coasts for nice plotting
146
library(maptools)
147

    
148
data(wrld_simpl)
149
coast <- unionSpatialPolygons(wrld_simpl, rep("land",nrow(wrld_simpl)), threshold=5)
150
coast=as(coast,"SpatialLines")
151
#coast=spTransform(coast,CRS(projection(mod35)))
152

    
153

    
154
## write a pdf
155
#dir.create("output")
156
pdf("output/NDP026d.pdf",width=11,height=8.5)
157

    
158
## map of stations
159
 xyplot(lat~lon,data=st,pch=16,cex=.5,col="black",auto.key=T,
160
       main="NDP-026D Cloud Climatology Stations",ylab="Latitude",xlab="Longitude")+
161
  layer(sp.lines(coast,col="grey"),under=T)
162

    
163
xyplot(lat~lon|month2,groups=cut,data=cldm,pch=".",cex=.2,auto.key=T,
164
       main="Mean Monthly Cloud Coverage",ylab="Latitude",xlab="Longitude",
165
        par.settings = list(superpose.symbol= list(pch=16,col=c("blue","green","yellow","red"))))+
166
  layer(sp.lines(coast,col="grey"),under=T)
167

    
168

    
169
## Validation
170
m=10
171
zlim=c(40,100)
172
dr=subset(mod35,subset=m);projection(dr)=projection(mod35)
173
ds=cldms[cldms$month==m,]
174
plot(dr,col=cp(100),zlim=zlim,main="Comparison of MOD35 Cloud Frequency and NDP-026D Station Cloud Climatologies",
175
     ylab="Northing (m)",xlab="Easting (m)",sub="MOD35 is proportion of cloudy days, while NDP-026D is Mean Cloud Coverage")
176
plot(ds,add=T,pch=21,cex=3,lwd=2,fg="black",bg=as.character(cut(ds$cld,breaks=seq(zlim[1],zlim[2],len=5),labels=cp(4))))
177
#legend("topright",legend=seq(zlim[1],zlim[2],len=5),pch=16,col=cp(length(breaks)))
178

    
179

    
180
xyplot(mod35~cld,data=mod35v,subscripts=T,auto.key=T,panel=function(x,y,subscripts){
181
   td=mod35v[subscripts,]
182
#   panel.segments(x-td$cldsd[subscripts],y,x+td$cldsd[subscripts],y,subscripts=subscripts)
183
   panel.xyplot(x,y,subscripts=subscripts,type=c("p","smooth"),pch=16,col="black")
184
#   panel.segments(x-td$cldsd[subscripts],y,x+td$cldsd[subscripts],y,subscripts=subscripts)
185
 },ylab="MOD35 Proportion Cloudy Days",xlab="NDP-026D Mean Monthly Cloud Amount",
186
        main="Comparison of MOD35 Cloud Mask and Station Cloud Climatologies")
187

    
188
#xyplot(mod35~cld|month,data=mod35v,subscripts=T,auto.key=T,panel=function(x,y,subscripts){
189
#   td=mod35v[subscripts,]
190
#   panel.segments(x-td$cldsd[subscripts],y,x+td$cldsd[subscripts],y,subscripts=subscripts)
191
#   panel.xyplot(x,y,subscripts=subscripts,type=c("p","smooth"),pch=16,col="black")
192
#   panel.segments(x-td$cldsd[subscripts],y,x+td$cldsd[subscripts],y,subscripts=subscripts)
193
# },ylab="MOD35 Proportion Cloudy Days",xlab="NDP-026D Mean Monthly Cloud Amount",
194
#        main="Comparison of MOD35 Cloud Mask and Station Cloud Climatologies")
195

    
196

    
197
dev.off()
198

    
199
graphics.off()
(24-24/29)