Project

General

Profile

« Previous | Next » 

Revision be7d0e21

Added by Benoit Parmentier over 10 years ago

assessment NEX run part2: adding plots of number of stations per tiles

View differences:

climate/research/oregon/interpolation/global_run_scalingup_assessment_part2.R
84 84
#in_dir_shp <- "/nobackupp4/aguzman4/climateLayers/output4/subset/shapefiles/"
85 85

  
86 86
df_tile_processed <- read.table(file=file.path(out_dir,paste("df_tile_processed_",out_prefix,".txt",sep="")),sep=",")
87
in_dir_list <- file.path(in_dir1,read.table(file.path(in_dir1,"processed.txt"))$V1)
87
#in_dir_list <- file.path(in_dir1,read.table(file.path(in_dir1,"processed.txt"))$V1)
88 88
y_var_name <- "dailyTmax"
89 89
interpolation_method <- c("gam_CAI")
90 90
out_prefix<-"run3_global_analyses_06192014"
......
111 111
#lf_tables <- list.files(out_dir,)
112 112
summary_metrics_v <- read.table(file=file.path(out_dir,paste("summary_metrics_v2_NA_",out_prefix,".txt",sep="")),sep=",")
113 113
tb <- read.table(file=file.path(out_dir,paste("tb_diagnostic_v_NA","_",out_prefix,".txt",sep="")),sep=",")
114
df_tile_processed <- read.table(file=file.path(out_dir,paste("df_tile_processed_",out_prefix,".txt",sep="")),sep=",")
114
df_tile_processed <- read.table(file=file.path(out_dir,paste("df_tile_processed_",out_prefix,".txt",sep="")),sep=","),paste("pred_data_month_info_",out_prefix,".txt",sep="")) <- read.table(file=file.path(out_dir,paste("pred_data_month_info_",out_prefix,".txt",sep="")),sep=",")
115
pred_data_month_info <- read.table(file=file.path(out_dir,paste("pred_data_month_info_",out_prefix,".txt",sep="")),sep=",")
116
pred_data_day_info <- read.table(file=file.path(out_dir,paste("pred_data_day_info_",out_prefix,".txt",sep="")),sep=",")
115 117

  
116 118
########################## START SCRIPT ##############################
117 119

  
......
123 125
#matching_index <- match(l_shp,list_shp_reg_files)
124 126
matching_index <- match(list_shp_reg_files,l_shp)
125 127
df_tile_processed$shp_files <-list_shp_world[matching_index]
128
list_shp_reg_files <- df_tile_processed$shp_files
126 129

  
127
df_tiled_processed <- na.omit(df_tile_processed) #remove other list of folders irrelevant
128
list_shp_reg_files <- df_tiled_processed$shp_files
130
#df_tiled_processed <- na.omit(df_tile_processed) #remove other list of folders irrelevant
131
#list_shp_reg_files <- df_tiled_processed$shp_files
129 132
list_shp_reg_files<- file.path(in_dir_shp,list_shp_reg_files)
130 133

  
131 134
### First get background map to display where study area is located
......
133 136
if region_name=="USA"{
134 137
  usa_map <- getData('GADM', country='USA', level=1) #Get US map
135 138
  #usa_map <- getData('GADM', country=region_name,level=1) #Get US map, this is not working right now
136
  #usa_map_2 <- usa_map[usa_map$NAME_1!="Alaska",] #remove Alaska
139
  usa_map <- usa_map[usa_map$NAME_1!="Alaska",] #remove Alaska
137 140
  reg_layer <- usa_map[usa_map$NAME_1!="Hawaii",] #remove Hawai 
138 141
}
139 142

  
......
162 165
  shps_tiles[[i]] <- shp1
163 166
}
164 167

  
168

  
165 169
#plot info: with labels
166 170
res_pix <- 480
167 171
col_mfrow <- 1
......
389 393
## plotting of delta and clim for later scripts...
390 394

  
391 395
######################
392
### Figure 8: Histograms...
396
### Figure 9: Plot the number of stations in a processing tile
397

  
398
dd <- merge(df_tile_processed,pred_data_month_info,"tile_id")
399
coordinates(dd) <- c(dd$x,dd$y)
400

  
401
## Make this a function later...
402
list_shp_tmp <- vector("list",length(shps_tiles))
403
for(i in 1:length(shps_tiles)){
404
  #test=spRbind(shps_tiles[[1]],shps_tiles[[2]])
405
  shp1 <- shps_tiles[[i]]
406

  
407
  ID_str <- unlist(strsplit(as.character(df_tile_processed$tile_id[i]),"_"))[2]
408
  shp1$FID <- ID_str
409
  shp1<- spChFIDs(shp1, as.character(shp1$FID)) #assign ID
410
  list_shp_tmp[[i]]  <-shp1
411
}
412

  
413
combined_shp <- list_shp_tmp[[1]]
414
for(i in 2:length(list_shp_tmp)){
415
  combined_shp <- rbind(combined_shp,list_shp_tmp[[i]])
416
  #sapply(slot(shps_tiles[[2]], "polygons"), function(x) slot(x, "ID"))
417
  #rownames(as(alaska.tract, "data.frame"))
418
}
419

  
420
combined_shp$tile_id <- df_tile_processed$tile_id
421
 
422
test <- combined_shp
423
test2 <- merge(test,pred_data_month_info, by="tile_id")
424

  
425
r <- raster(lf_pred_list[i])
426

  
427
plot(combined_shp)
428
# polygons
429
plot(combined_shp, col = fillColour, border = outlineColour)
430

  
431
p0 <- spplot(combined_shp, "Stations",col.regions=matlab.like(100))
432
p1 <- spplot(reg_layer,"ISO",colorkey=FALSE) #Use ISO instead of NAME_1 to see no color?
433
p0 +p1
434

  
435
### Now plot number of training for monthly data
436

  
437
df_dat <- subset(pred_data_month_info, pred_mod == "mod1" & date =="20100115")
438
#shp_dat <-merge(combined_shp,df_dat,by="tile_id")
439
shp_dat <-merge(x=combined_shp,y=df_dat,by="tile_id",all.x=T) #if tile is missing then add rows with NA
440
#shp_dat <- merge(shp_dat,df_tile_processed,by="tile_id")
441
#coordinates(shp_dat) <- cbind(shp_dat$lon,shp_dat$lat) 
442
#proj4string(shp_dat) <- CRS_WGS84
443
  
444
#test <- overlay(combined_shp,shp_dat)
445
pol <- SpatialPolygons(combined_shp@polygons,proj4string=CRS(CRS_WGS84))
446
spp <- SpatialPolygonsDataFrame(pol,data=shp_dat)
393 447

  
448
p0 <- spplot(spp, "n_mod",col.regions=matlab.like(100))
449
p1 <- spplot(reg_layer,"ISO",colorkey=FALSE) #Use ISO instead of NAME_1 to see no color?
450
p0 +p1
394 451

  
395 452
##################### END OF SCRIPT ######################

Also available in: Unified diff