Revision bffb36c8
Added by Benoit Parmentier about 9 years ago
climate/research/oregon/interpolation/master_script_stage_7.R | ||
---|---|---|
1 |
################## Master script for climate predictions ####################################### |
|
2 |
############################ TMIN AND TMAX predictions ########################################## |
|
3 |
# |
|
4 |
##This script produces intperpolated surface of TMIN and TMAX for specified processing region(s) given sets |
|
5 |
#of inputs and parameters. |
|
6 |
#STAGE 1: LST climatology downloading and/or calculation |
|
7 |
#STAGE 2: Covariates preparation for study/processing area: calculation of covariates (spect,land cover,etc.) and reprojection |
|
8 |
#STAGE 3: Data preparation: meteorological station database query and extraction of covariates values from raster brick |
|
9 |
#STAGE 4: Raster prediction: run interpolation method (-- gam fusion, gam CAI, ...) and perform validation |
|
10 |
#STAGE 5: Output analyses: assessment of results for specific dates and tiles |
|
11 |
#STAGE 6: Assessement of predictions by tiles and regions |
|
12 |
#STAGE 7: Mosaicing of predicted surfaces and accuracy metrics (RMSE,MAE) by regions |
|
13 |
#AUTHOR: Benoit Parmentier |
|
14 |
#CREATED ON: 01/01/2015 |
|
15 |
#MODIFIED ON: 01/05/2016 |
|
16 |
#PROJECT: NCEAS INPLANT: Environment and Organisms |
|
17 |
|
|
18 |
## TODO: |
|
19 |
# |
|
20 |
# Clean up temporary files |
|
21 |
# |
|
22 |
################################################################################################## |
|
23 |
|
|
24 |
###Loading R library and packages ou |
|
25 |
library(RPostgreSQL) |
|
26 |
library(maps) |
|
27 |
library(maptools) |
|
28 |
library(parallel) |
|
29 |
library(gtools) # loading some useful tools |
|
30 |
library(mgcv) # GAM package by Simon Wood |
|
31 |
library(sp) # Spatial pacakge with class definition by Bivand et al. |
|
32 |
library(spdep) # Spatial pacakge with methods and spatial stat. by Bivand et al. |
|
33 |
library(rgdal) # GDAL wrapper for R, spatial utilities |
|
34 |
library(gstat) # Kriging and co-kriging by Pebesma et al. |
|
35 |
library(fields) # NCAR Spatial Interpolation methods such as kriging, splines |
|
36 |
library(raster) # Hijmans et al. package for raster processing |
|
37 |
library(rasterVis) |
|
38 |
library(spgwr) |
|
39 |
library(reshape) |
|
40 |
library(plotrix) |
|
41 |
|
|
42 |
######## PARAMETERS FOR WORK FLOW ######################### |
|
43 |
### Need to add documentation ### |
|
44 |
|
|
45 |
#Adding command line arguments to use mpiexec |
|
46 |
args<-commandArgs(TRUE) |
|
47 |
#script_path<-"/nobackupp6/aguzman4/climateLayers/finalCode/environmental-layers/climate/research/oregon/interpolation" |
|
48 |
#dataHome<-"/nobackupp6/aguzman4/climateLayers/interp/testdata/" |
|
49 |
#script_path2<-"/nobackupp6/aguzman4/climateLayers/finalCode/environmental-layers/climate/research/world/interpolation" |
|
50 |
|
|
51 |
#CALLED FROM MASTER SCRIPT: |
|
52 |
|
|
53 |
script_path <- "/nobackupp8/bparmen1/env_layers_scripts" #path to script |
|
54 |
function_mosaicing_functions <- "global_run_scalingup_mosaicing_function_12192015.R" #PARAM12 |
|
55 |
function_mosaicing <-"global_run_scalingup_mosaicing_01012016.Rglobal_run_scalingup_mosaicing_01052016.R" |
|
56 |
source(file.path(function_mosaicing)) #source all functions used in this script |
|
57 |
source(file.path(function_mosaicing_functions)) #source all functions used in this script |
|
58 |
|
|
59 |
### Parameters and arguments ### |
|
60 |
|
|
61 |
var<-"TMAX" # variable being interpolated |
|
62 |
if (var == "TMAX") { |
|
63 |
y_var_name <- "dailyTmax" |
|
64 |
y_var_month <- "TMax" |
|
65 |
} |
|
66 |
if (var == "TMIN") { |
|
67 |
y_var_name <- "dailyTmin" |
|
68 |
y_var_month <- "TMin" |
|
69 |
} |
|
70 |
|
|
71 |
#interpolation_method<-c("gam_fusion") #other otpions to be added later |
|
72 |
interpolation_method<-c("gam_CAI") |
|
73 |
CRS_interp<-"+proj=sinu +lon_0=0 +x_0=0 +y_0=0 +a=6371007.181 +b=6371007.181 +units=m +no_defs"; |
|
74 |
#CRS_interp <-"+proj=lcc +lat_1=43 +lat_2=45.5 +lat_0=41.75 +lon_0=-120.5 +x_0=400000 +y_0=0 +ellps=GRS80 +units=m +no_defs"; |
|
75 |
CRS_locs_WGS84<-CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #Station coords WGS84 |
|
76 |
|
|
77 |
out_region_name<-"" |
|
78 |
list_models<-c("y_var ~ s(lat,lon,k=5) + s(elev_s,k=3) + s(LST,k=3)") |
|
79 |
|
|
80 |
#reg1 (North Am), reg2(Europe),reg3(Asia), reg4 (South Am), reg5 (Africa), reg6 (Australia-Asia) |
|
81 |
#master directory containing the definition of tile size and tiles predicted |
|
82 |
in_dir1 <- "/nobackupp6/aguzman4/climateLayers/out/" |
|
83 |
#/nobackupp6/aguzman4/climateLayers/out_15x45/1982 |
|
84 |
|
|
85 |
#region_names <- c("reg23","reg4") #selected region names, #PARAM2 |
|
86 |
region_name <- c("reg4") #run assessment by region, this is a unique region only |
|
87 |
#region_names <- c("reg1","reg2","reg3","reg4","reg5","reg6") #selected region names, #PARAM2 |
|
88 |
interpolation_method <- c("gam_CAI") #PARAM4 |
|
89 |
out_prefix <- "run_global_analyses_pred_12282015" #PARAM5 |
|
90 |
out_dir <- "/nobackupp8/bparmen1/" #PARAM6 |
|
91 |
#out_dir <-paste(out_dir,"_",out_prefix,sep="") |
|
92 |
create_out_dir_param <- TRUE #PARAM7 |
|
93 |
|
|
94 |
#CRS_interp<-"+proj=sinu +lon_0=0 +x_0=0 +y_0=0 +a=6371007.181 +b=6371007.181 +units=m +no_defs"; |
|
95 |
#CRS_interp <-"+proj=lcc +lat_1=43 +lat_2=45.5 +lat_0=41.75 +lon_0=-120.5 +x_0=400000 +y_0=0 +ellps=GRS80 +units=m +no_defs"; |
|
96 |
CRS_locs_WGS84<-CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #Station coords WGS84 |
|
97 |
|
|
98 |
#list_year_predicted <- 1984:2004 |
|
99 |
list_year_predicted <- c("2014") |
|
100 |
#year_predicted <- list_year_predicted[1] |
|
101 |
|
|
102 |
file_format <- ".tif" #format for mosaiced files #PARAM10 |
|
103 |
NA_flag_val <- -9999 #No data value, #PARAM11 |
|
104 |
num_cores <- 6 #number of cores used #PARAM13 |
|
105 |
plotting_figures <- TRUE #running part2 of assessment to generate figures... |
|
106 |
|
|
107 |
##Additional parameters used in part 2, some these may be removed as code is simplified |
|
108 |
mosaic_plot <- FALSE #PARAM14 |
|
109 |
day_to_mosaic <- c("19920102","19920103","19920103") #PARAM15 |
|
110 |
multiple_region <- TRUE #PARAM16 |
|
111 |
countries_shp <- "/nobackupp8/bparmen1/NEX_data/countries.shp" #PARAM17 |
|
112 |
#countries_shp <-"/data/project/layers/commons/NEX_data/countries.shp" #Atlas |
|
113 |
plot_region <- TRUE #PARAM18 |
|
114 |
threshold_missing_day <- c(367,365,300,200)#PARAM19 |
|
115 |
|
|
116 |
list_param_run_assessment_prediction <- list(in_dir1,region_name,y_var_name,interpolation_method,out_prefix, |
|
117 |
out_dir,create_out_dir_param,CRS_locs_WGS84,list_year_predicted, |
|
118 |
file_format,NA_flag_val,num_cores,plotting_figures, |
|
119 |
mosaic_plot,day_to_mosaic,multiple_region,countries_shp,plot_region) |
|
120 |
list_names <- c("in_dir1","region_name","y_var_name","interpolation_method","out_prefix", |
|
121 |
"out_dir","create_out_dir_param","CRS_locs_WGS84","list_year_predicted", |
|
122 |
"file_format","NA_flag_val","num_cores","plotting_figures", |
|
123 |
"mosaic_plot","day_to_mosaic","multiple_region","countries_shp","plot_region") |
|
124 |
|
|
125 |
|
|
126 |
names(list_param_run_assessment_prediction)<-list_names |
|
127 |
|
|
128 |
#max number of cells to read in memory |
|
129 |
max_mem<-args[11] |
|
130 |
#rasterOptions(maxmemory=1e+07,timer=TRUE) |
|
131 |
|
|
132 |
#debug(run_assessment_prediction_fun) |
|
133 |
#debug(debug_fun_test) |
|
134 |
#debug_fun_test(list_param_raster_prediction) |
|
135 |
i <- 1 #this select the first year of list_year_predicted |
|
136 |
if (stages_to_run[6]==6){ |
|
137 |
assessment_prediction_obj <- run_assessment_prediction_fun(i,list_param_run_assessment_prediction) |
|
138 |
} |
|
139 |
|
|
140 |
## Add stage 7 (mosaicing) here?? |
|
141 |
#i <- 1 #this select the first year of list_year_predicted |
|
142 |
#if (stages_to_run[7]==7){ |
|
143 |
# assessment_prediction_obj <- run_assessment_prediction_fun(i,list_param_run_assessment_prediction) |
|
144 |
#} |
|
145 |
|
|
146 |
############### END OF SCRIPT ################### |
|
147 |
##################################################### |
|
148 |
|
|
149 |
# #LAND COVER INFORMATION |
|
150 |
# LC1: Evergreen/deciduous needleleaf trees |
|
151 |
# LC2: Evergreen broadleaf trees |
|
152 |
# LC3: Deciduous broadleaf trees |
|
153 |
# LC4: Mixed/other trees |
|
154 |
# LC5: Shrubs |
|
155 |
# LC6: Herbaceous vegetation |
|
156 |
# LC7: Cultivated and managed vegetation |
|
157 |
# LC8: Regularly flooded shrub/herbaceous vegetation |
|
158 |
# LC9: Urban/built-up |
|
159 |
# LC10: Snow/ice |
|
160 |
# LC11: Barren lands/sparse vegetation |
|
161 |
# LC12: Open water |
|
162 |
|
Also available in: Unified diff
initial commit for stage 7, mosaicing of predictions and accuracy layers productions