Project

General

Profile

« Previous | Next » 

Revision c0c600a6

Added by Benoit Parmentier almost 12 years ago

Raster prediction gam fusion, modifications to allow TMIN predictions

View differences:

climate/research/oregon/interpolation/GAM_fusion_analysis_raster_prediction_multisampling.R
168 168
  #source(file.path(script_path,"GAM_fusion_function_multisampling_03122013.R"))
169 169
  gamclim_fus_mod<-mclapply(1:12, list_param=list_param_runClim_KGFusion, runClim_KGFusion,mc.preschedule=FALSE,mc.cores = 6) #This is the end bracket from mclapply(...) statement
170 170
  #gamclim_fus_mod<-mclapply(1:6, runClim_KGFusion,mc.preschedule=FALSE,mc.cores = 6) #This is the end bracket from mclapply(...) statement
171
  save(gamclim_fus_mod,file= paste("gamclim_fus_mod",out_prefix,".RData",sep=""))
171
  save(gamclim_fus_mod,file= paste("gamclim_fus_mod_",y_var_name,out_prefix,".RData",sep=""))
172 172
  t2<-proc.time()-t1
173 173
  writeLines(as.character(t2),con=log_file,sep="\n")
174 174
  
......
200 200
  
201 201
  #gam_fus_mod<-mclapply(1:length(sampling_obj$ghcn_data_day),runGAMFusion,list_param_runGAMFusion,mc.preschedule=FALSE,mc.cores = 9) #This is the end bracket from mclapply(...) statement
202 202
  #gam_fus_mod<-mclapply(1:length(ghcn.subsets), runGAMFusion,mc.preschedule=FALSE,mc.cores = 9) #This is the end bracket from mclapply(...) statement
203
  save(gam_fus_mod,file= paste("gam_fus_mod",out_prefix,".RData",sep=""))
203
  
204
  save(gam_fus_mod,file= paste("gam_fus_mod_",y_var_name,out_prefix,".RData",sep=""))
204 205
  t2<-proc.time()-t1
205 206
  writeLines(as.character(t2),con=log_file,sep="\n")
206 207
  #browser()
......
223 224
  gam_fus_validation_mod<-mclapply(1:length(gam_fus_mod), list_param=list_param_validation, calculate_accuracy_metrics,mc.preschedule=FALSE,mc.cores = 9) #This is the end bracket from mclapply(...) statement
224 225
  
225 226
  #gam_fus_validation_mod<-mclapply(1:1, calculate_accuracy_metrics,mc.preschedule=FALSE,mc.cores = 1) #This is the end bracket from mclapply(...) statement
226
  save(gam_fus_validation_mod,file= paste("gam_fus_validation_mod",out_prefix,".RData",sep=""))
227
  save(gam_fus_validation_mod,file= paste("gam_fus_validation_mod_",y_var_name,out_prefix,".RData",sep=""))
227 228
  t2<-proc.time()-t1
228 229
  writeLines(as.character(t2),con=log_file,sep="\n")
229 230
  
......
235 236
  
236 237
  #Call function to create plots of metrics for validation dataset
237 238
  metric_names<-c("rmse","mae","me","r","m50")
238
  summary_metrics<-boxplot_from_tb(tb_diagnostic_v,metric_names,out_prefix)
239
  names(summary_metrics)<-c("avg","median")
240
  ##Write out information concerning accuracy and predictions
241
  outfile<-file.path(in_path,paste("assessment_measures_",out_prefix,".txt",sep=""))
242
  write.table(tb_diagnostic_v,file= outfile,row.names=FALSE,sep=",")
243
  write.table(x=as.data.frame(summary_metrics[[1]]), file= outfile, append=TRUE,sep=",") #write out avg
244
  write.table(x=as.data.frame(summary_metrics[[2]]), file= outfile, append=TRUE,sep=",") #write out median
239
  summary_metrics_v<-boxplot_from_tb(tb_diagnostic_v,metric_names,out_prefix)
240
  names(summary_metrics_v)<-c("avg","median")
245 241
  
246 242
  #################### CLOSE LOG FILE  ####################
247 243
  
......
258 254
  ################### PREPARE RETURN OBJECT ###############
259 255
  #Will add more information to be returned
260 256
  
261
  raster_prediction_obj<-list(gamclim_fus_mod,gam_fus_mod,gam_fus_validation_mod,tb_diagnostic_v,summary_metrics)
257
  raster_prediction_obj<-list(gamclim_fus_mod,gam_fus_mod,gam_fus_validation_mod,tb_diagnostic_v,summary_metrics_v)
262 258
  names(raster_prediction_obj)<-c("gamclim_fus_mod","gam_fus_mod","gam_fus_validation_mod","tb_diagnostic_v",
263 259
                                  "summary_metrics_v")  
264
  save(raster_prediction_obj,file= paste("raster_prediction_obj_",out_prefix,".RData",sep=""))
260
  save(raster_prediction_obj,file= paste("raster_prediction_obj_",y_var_name,out_prefix,".RData",sep=""))
265 261
  
266 262
  return(raster_prediction_obj)
267 263
}

Also available in: Unified diff