Revision c11dd274
Added by Benoit Parmentier almost 9 years ago
climate/research/oregon/interpolation/global_run_scalingup_assessment_part5.R | ||
---|---|---|
538 | 538 |
|
539 | 539 |
##### Figure 3 ### |
540 | 540 |
|
541 |
tile_selected_extremes <- as.character(list_tb_extremes[[3]]$df_extremes$tile_id) |
|
542 |
|
|
543 |
list_fig_filename <- vector("list",length=length(tile_selected_extremes)) |
|
541 | 544 |
|
542 | 545 |
for(i in 1:length(tile_selected_extremes)){ |
543 |
d |
|
544 |
d |
|
545 |
d |
|
546 |
test<- subset(tb_subset,tb_subset$tile_id=="tile_14") |
|
547 |
test2 <- aggregate(rmse~date,test,min) |
|
548 |
#idx <- test2$date #transform this format... |
|
549 |
|
|
550 |
idx <- as.Date(strptime(test2$date, "%Y%m%d")) # interpolation date being processed |
|
551 |
|
|
546 |
tile_selected <- tile_selected_extremes[i] |
|
547 |
#tb_subset$tile_id |
|
548 |
tb_tile_tmp <- subset(tb_subset,tb_subset$tile_id==tile_selected) |
|
549 |
tb_tile <- aggregate(rmse~date,tb_tile_tmp,min) |
|
550 |
#idx <- test2$date #transform this format... |
|
551 |
|
|
552 |
idx <- as.Date(strptime(tb_tile$date, "%Y%m%d")) # interpolation date being processed |
|
553 |
d_z <- zoo(tb_tile,idx) #make a time series ... |
|
554 |
#add horizontal line... |
|
555 |
#plot(d_z[[metric_name]]) |
|
556 |
|
|
557 |
fig_filename <- paste("Figure3a_time_series_extremes_tile_",model_name[j],"_",tile_selected,"_", |
|
558 |
region_name,"_",out_suffix,".png",sep="") |
|
559 |
|
|
560 |
res_pix <- 960 |
|
561 |
col_mfrow <- 1 |
|
562 |
row_mfrow <- 1 |
|
563 |
#only mod1 right now |
|
564 |
png(filename=fig_filename, |
|
565 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
|
566 |
|
|
567 |
title_str <- paste("Time series of",metric_name,"for",tile_selected,"and",region_name,sep=" ") |
|
568 |
plot(d_z$rmse,ylab=metric_name,xlab="dates") |
|
569 |
title(title_str) |
|
570 |
|
|
571 |
#length(unique(test$year_predicted)) |
|
572 |
#unique(tb$year_predicted) |
|
573 |
dev.off() |
|
574 |
list_fig_filename[[i]] <- fig_filename |
|
575 |
|
|
576 |
##Now plot the location |
|
577 |
#Take the max for now? |
|
578 |
val_selected <- max(d_z$rmse) |
|
579 |
d_z_selected <- d_z[d_z$rmse==val_selected,] |
|
580 |
date_selected <- d_z_selected$date |
|
581 |
#data_v_selected <- subset(tb_data_v,tb_data_v$date==date_selected)# & tb_data_v$tile_id==tile_selected) |
|
582 |
|
|
583 |
data_v_selected <- subset(tb_data_v,tb_data_v$date==date_selected & tb_data_v$tile_id==tile_selected) |
|
584 |
#tb_tile[,rmse==] |
|
585 |
|
|
586 |
data_s_selected <- subset(tb_data_s,tb_data_s$date==date_selected & tb_data_s$tile_id==tile_selected) |
|
587 |
|
|
588 |
fig_filename <- paste("Figure3b_data_stations_trainaing_testing_extremes_tile_",model_name[j],"_",tile_selected,"_", |
|
589 |
region_name,"_",out_suffix,".png",sep="") |
|
590 |
coordinates(data_s_selected)<- c(data_s_selected$lon,data_s_selected$lat) |
|
591 |
coordinates(data_v_selected)<- c(data_v_selected$lon,data_v_selected$lat) |
|
592 |
|
|
593 |
res_pix <- 960 |
|
594 |
col_mfrow <- 1 |
|
595 |
row_mfrow <- 1 |
|
596 |
#only mod1 right now |
|
597 |
png(filename=fig_filename, |
|
598 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
|
552 | 599 |
|
553 |
d_z <- zoo(test2,idx) #make a time series ... |
|
554 |
#add horizontal line... |
|
555 |
plot(d_z[[metric_name]]) |
|
556 |
plot(d_z$rmse,ylab=metric_name,xlab="dates") |
|
557 |
title(title_str) |
|
600 |
title_str <- paste("Data stations",metric_name,"for",tile_selected,"and",region_name,sep=" ") |
|
601 |
|
|
602 |
p_shp <- spplot(reg_layer,"ISO3" ,col.regions=NA, col="black") #ok problem solved!! |
|
603 |
#title("(a) Mean for 1 January") |
|
604 |
#tb_sorted$freq_extremes2 <- tb_sorted$freq_extremes/17 |
|
605 |
p <- bubble(tb_sorted,"freq_extremes",main=paste("Extremes per tile and by ",model_name[j]," for ", |
|
606 |
threshold_val[i])) |
|
558 | 607 |
|
559 |
plot(test$rmse,type="b") |
|
560 |
length(unique(test$year_predicted)) |
|
561 |
unique(tb$year_predicted) |
|
608 |
plot(d_z$rmse,ylab=metric_name,xlab="dates") |
|
609 |
title(title_str) |
|
610 |
|
|
611 |
#length(unique(test$year_predicted)) |
|
612 |
#unique(tb$year_predicted) |
|
613 |
dev.off() |
|
562 | 614 |
|
563 | 615 |
} |
564 | 616 |
|
617 |
#Now plot the location |
|
618 |
|
|
619 |
tile_selected_extremes <- as.character(list_tb_extremes[[3]]$df_extremes$tile_id) |
|
620 |
list_fig_filename <- vector("list",length=length(tile_selected_extremes)) |
|
621 |
|
|
622 |
|
|
565 | 623 |
###################################################### |
566 | 624 |
##### Prepare objet to return #### |
567 | 625 |
|
Also available in: Unified diff
analyses of extremes more changes and debugging to record data