Project

General

Profile

« Previous | Next » 

Revision c1e644f6

Added by Benoit Parmentier almost 11 years ago

multi timescale paper, add comparison through differences and land cover effects

View differences:

climate/research/oregon/interpolation/multi_timescale_paper_interpolation.R
5 5
#Figures, tables and data for the  paper are also produced in the script.
6 6
#AUTHOR: Benoit Parmentier 
7 7
#CREATED ON: 10/31/2013  
8
#MODIFIED ON: 12/10/2013            
8
#MODIFIED ON: 12/14/2013            
9 9
#Version: 1
10 10
#PROJECT: Environmental Layers project                                     
11 11
#################################################################################################
......
39 39
#### FUNCTION USED IN SCRIPT
40 40

  
41 41
function_analyses_paper1 <-"contribution_of_covariates_paper_interpolation_functions_10222013.R"
42
function_analyses_paper2 <-"multi_timescales_paper_interpolation_functions_12102013.R"
42
function_analyses_paper2 <-"multi_timescales_paper_interpolation_functions_12122013.R"
43 43

  
44 44
##############################
45 45
#### Parameters and constants  
......
146 146
names(list_raster_obj_files)<- c("gam_daily","kriging_daily","gwr_daily","gwr_daily",
147 147
                                 "gam_CAI","kriging_CAI","gwr_CAI",
148 148
                                 "gam_fss","kriging_fss","gwr_fss")
149

  
149 150
summary_metrics_v_list<-lapply(list_raster_obj_files,FUN=function(x){x<-load_obj(x);x[["summary_metrics_v"]]$avg$rmse})                           
150 151
names(summary_metrics_v_list)
151 152

  
......
551 552
trans_data3 <-plot_transect_m2(list_transect3,rast_pred3,title_plot3,disp=FALSE,m_layers_sc)
552 553

  
553 554
################################################
554

  
555 555
#Figure 8: Spatial pattern: Image differencing and land cover  
556 556
#Do for january and September...?
557 557

  
558
#names_layers <-c("mod1 = lat*long","mod2 = lat*long + LST","mod3 = lat*long + elev","mod4 = lat*long + N_w*E_w",
559
#                 "mod5 = lat*long + elev + DISTOC","mod6 = lat*long + elev + LST","mod7 = lat*long + elev + LST*FOREST")
560

  
561
methods_name <-c("gam_daily","gam_CAI","gam_fss")
562
index<-244 #index corresponding to Sept 1
563
y_var_name <-"dailyTmax"
564
ref_mod <- 3 #mod1
565
alt_mod <- 6
566
file_format <- ".rst"
567
NA_flag_val <- -9999
568

  
569
list_param_diff <- list(index,list_raster_obj_files,methods_name,y_var_name,ref_mod,alt_mod,NA_flag_val,file_format,out_dir,out_prefix)
570
names(list_param_diff) <- c("index","list_raster_obj_files","methods_name","y_var_name","ref_mod","alt_mod","NA_flag_val","file_format","out_dir","out_prefix")
571

  
572
#diff_list <- mclapply(1:365, list_param=list_param_diff, FUN=diff_date_rast_pred_fun,mc.preschedule=FALSE,mc.cores = 11) #This is the end bracket from mclapply(...) statement
573

  
574
diff_pred_date1_list<- diff_date_rast_pred_fun(1,list_param_diff)
575
diff_pred_date2_list<- diff_date_rast_pred_fun(244,list_param_diff)
576
r_stack_diff <-stack(c(diff_pred_date1_list,diff_pred_date2_list))
577
names(r_stack_diff) <- c("Jan_Daily","Jan_CAI","Jan_FSS","Sept_Daily","Sept_CAI","Sept_FSS")
578
temp.colors <- colorRampPalette(c('blue', 'white', 'red'))
579

  
580
layout_m<-c(1,1) #one row two columns
581
png(paste("Figure_9_difference_image_",out_prefix,".png", sep=""),
582
    height=480*layout_m[1],width=480*layout_m[2])
583
plot(r_stack_diff,col=temp.colors(25))
584
#levelplot(r_stack_diff)
585
dev.off()
586
###
587

  
588
LC_subset <- c("LC1","LC5","LC6","LC7","LC9","LC11")  
589
LC_names <- c("LC1_forest", "LC5_shrub", "LC6_grass", "LC7_crop", "LC9_urban","LC11_barren")
590
plot()
591
avl<-c(0,10,1,10,20,2,20,30,3,30,40,4,40,50,5,50,60,6,60,70,7,70,80,8,80,90,9,90,100,10)#Note that category 1 does not include 0!!
592

  
593
stat_list <- extract_diff_by_landcover(r_stack_diff,s_raster,LC_subset,LC_names,avl)
558 594

  
595
#stat_list <- extract_diff_by_landcover(s_raster,LC_subset,LC_names,avl)
596

  
597
#write_out_raster_fun(s_raster,out_suffix=out_prefix,out_dir=out_dir,NA_flag_val=-9999,file_format=".rst")
598

  
599
#show correlation with LST by day over the year, ok writeout s_raster of coveriate??
600

  
601
title_plots_list <-c("Jan_Daily","Jan_CAI","Jan_FSS","Sept_Daily","Sept_CAI","Sept_FSS")
602

  
603
## Now create plots
604
layout_m<-c(2,3) #one row two columns
605
#savePlot(paste("fig6_diff_prediction_tmax_difference_land cover",mf_selected,mc_selected,date_selected,out_prefix,".png", sep="_"), type="png")
606

  
607
png(paste("Figure_9_diff_prediction_tmax_difference_land cover,ac_metric","_",out_prefix,".png", sep=""),
608
      height=480*layout_m[1],width=480*layout_m[2])
609
par(mfrow=layout_m)    
610
#funciton plot
611
for (i in 1:length(stat_list$avg)){
612
  #i=i+1
613
  zones_stat <- as.data.frame(stat_list$avg[[i]])
614
  zones_stat$zones <- 0:10
615

  
616
  plot(zones_stat$zones,zones_stat[,1],type="b",ylim=c(-4.5,6),
617
       ylab="",xlab="",axes=FALSE)
618
  #mtext("difference between mod3 and mod6 (degree C)",line=3,side=2,cex=1.2,font=2) #Add ylab with distance 3 from box
619
  #mtext("land cover percent classes",side=1,cex=1.2,line=3,font=2)
620
  lines(zones_stat$zones,zones_stat[,2],col="red",lty="dashed",pch=2) #shrub
621
  points(zones_stat$zones,zones_stat[,2],col="red",lty="dashed",pch=2) #shrub
622
  lines(zones_stat$zones,zones_stat[,3],col="green",lty="dotted",pch=3) #grass
623
  points(zones_stat$zones,zones_stat[,3],col="green",lty="dotted",pch=3) #grass
624
  lines(zones_stat$zones,zones_stat[,4],col="blue",lty="dashed",pch=4) #crop
625
  points(zones_stat$zones,zones_stat[,4],col="blue",lty="dashed",pch=4) #crop
626
  lines(zones_stat$zones,zones_stat[,5],col="darkgreen",lty="dashed",pch=5)
627
  points(zones_stat$zones,zones_stat[,5],col="darkgreen",lty="dashed",pch=5)
628
  lines(zones_stat$zones,zones_stat[,6],col="purple",lty="dashed",pch=6)
629
  points(zones_stat$zones,zones_stat[,6],col="purple",lty="dashed",pch=6)
630

  
631
  breaks_lab<-zones_stat$zones
632
  tick_lab<-c("0","1-10","","20-30","","40-50","","60-70","","80-90","90-100") #Not enough space for  
633
  #tick_lab<-c("0","10-20","30-40","60-70","80-90","90-100")
634
  axis(side=1,las=1,tick=TRUE,
635
       at=breaks_lab,labels=tick_lab, cex.axis=1.2,font=2) #reduce number of labels to Jan and June
636
  #text(tick_lab, par(\u201cusr\u201d)[3], labels = tick_lab, srt = 45, adj = c(1.1,1.1), xpd = TRUE, cex=.9)
637
  axis(2,cex.axis=1.2,font=2)
638
  box()
639
  legend("topleft",legend=names(zones_stat)[-7], 
640
        cex=1, col=c("black","red","green","blue","darkgreen","purple"),bty="n",
641
        lty=1,pch=1:7)
642
  title(paste(title_plots_list[i],sep=""),cex=1.4, font=2)
643
  #title(paste("Prediction tmax difference (",mf_selected,"-",mc_selected,") and land cover ",sep=""),cex=1.4,font=2) 
644
}
645
dev.off()
646

  
647
#### Now elev?
648
#LC1<-mask(LC1,mask_ELEV_SRTM)
649
#  cellStats(LC1,"countNA")        #Check that NA have been assigned to water and areas below 0 m
650
  
651
#LC1_50_m<- LC1>50
652
#LC1_100_m<- LC1>=100
653
#LC1_50_m[LC1_50_m==0]<-NA
654
#LC1_100_m[LC1_100_m==0]<-NA
655
#LC1_50<-LC1_50_m*LC1
656
#LC1_100<-LC1_100_m*LC1
657
#avl<-c(0,500,1,500,1000,2,1000,1500,3,1500,2000,4,2000,4000,5)
658
#rclmat<-matrix(avl,ncol=3,byrow=TRUE)
659
#elev_rec<-reclass(ELEV_SRTM,rclmat)  #Loss of layer names when using reclass
660
  
661
#elev_rec_forest<-elev_rec*LC1_100_m
662
#avg_elev_rec<-zonal(rast_diff,zones=elev_rec,stat="mean",na.rm=TRUE)
663
#std_elev_rec<-zonal(rast_diff,zones=elev_rec,stat="sd",na.rm=TRUE)
664
#avg_elev_rec_forest<-zonal(rast_diff,zones=elev_rec_forest,stat="mean",na.rm=TRUE)
665
#std_elev_rec_forest<-zonal(rast_diff,zones=elev_rec_forest,stat="sd",na.rm=TRUE)
666
  
667
## CREATE plots
668
#X11()
669
#plot(avg_elev_rec[,1],avg_elev_rec[,2],type="b",ylim=c(-10,1),
670
#       ylab="",xlab="",axes=FALSE)
671
#mtext("tmax difference between FSS and CAI (degree C)",side=2,cex=1.2,line=3,font=2)
672
#mtext("elevation classes (m)",side=1,cex=1.2,line=3,font=2)
673
#lines(avg_elev_rec_forest[,1],avg_elev_rec_forest[,2],col="green",type="b") #Elevation and 100% forest...
674
#breaks_lab<-avg_elev_rec[,1]
675
#elev_lab<-c("0-500","500-1000","1000-1500","1500-2000","2000-4000")
676
#axis(side=1,las=1,
677
#       at=breaks_lab,labels=elev_lab, cex=1.5,font=2) #reduce number of labels to Jan and June
678
#axis(2,cex.axis=1.2,font=2)
679
#legend("bottomleft",legend=c("Elevation", "elev_forest"), 
680
#         cex=1, lwd=1.3,col=c("black","green"),bty="n",
681
#         lty=1)
682
#box()
683
#title(paste("Prediction tmax difference (",mf_selected,"-",mc_selected,") and elevation ",sep=""),cex=1.4,font=2)
684
#savePlot(paste("fig7_diff_prediction_tmax_difference_elevation",mf_selected,mc_selected,date_selected,out_prefix,".png", sep="_"), type="png")
685
#dev.off()
559 686

  
560 687
################################################
561 688
#Figure 9: Spatial lag profiles and stations data  
562 689

  
563
y_var_name <-"dailyTmax"
564 690
index<-244 #index corresponding to Sept 1 #For now create Moran's I for only one date...
565 691

  
566 692
lf_moran_list<-lapply(list_raster_obj_files[c("gam_daily","gam_CAI","gam_fss")],
......
577 703

  
578 704
names_layers <-c("mod1 = lat*long","mod2 = lat*long + LST","mod3 = lat*long + elev","mod4 = lat*long + N_w*E_w",
579 705
                 "mod5 = lat*long + elev + DISTOC","mod6 = lat*long + elev + LST","mod7 = lat*long + elev + LST*FOREST")
580

  
581
list_filters<-lapply(1:20,FUN=autocor_filter_fun,f_type="queen") #generate lag 10 filters
706
nb_lag <-10
707
list_filters<-lapply(1:nb_lag,FUN=autocor_filter_fun,f_type="queen") #generate lag 10 filters
582 708
#moran_list <- lapply(list_filters,FUN=Moran,x=r)
583 709
list_moran_df <- vector("list",length=length(lf))
584 710
for (j in 1:length(lf)){
......
637 763

  
638 764
print(p)
639 765

  
640

  
641 766
dev.off()
642 767

  
643 768
###################### END OF SCRIPT #######################
644 769

  
770
# #LAND COVER INFORMATION
771

  
772
# LC1: Evergreen/deciduous needleleaf trees
773
# LC2: Evergreen broadleaf trees
774
# LC3: Deciduous broadleaf trees
775
# LC4: Mixed/other trees
776
# LC5: Shrubs
777
# LC6: Herbaceous vegetation
778
# LC7: Cultivated and managed vegetation
779
# LC8: Regularly flooded shrub/herbaceous vegetation
780
# LC9: Urban/built-up
781
# LC10: Snow/ice
782
# LC11: Barren lands/sparse vegetation
783
# LC12: Open water
784
#1,5,79,11
785
###
786

  
645 787

  

Also available in: Unified diff