Project

General

Profile

« Previous | Next » 

Revision c2f8f2d6

Added by Benoit Parmentier almost 10 years ago

run 10 assessment of reg2 and reg6 with generation of mosaics for 1000x3000

View differences:

climate/research/oregon/interpolation/global_run_scalingup_assessment_part1.R
5 5
#Part 1 create summary tables and inputs for figure in part 2 and part 3.
6 6
#AUTHOR: Benoit Parmentier 
7 7
#CREATED ON: 03/23/2014  
8
#MODIFIED ON: 12/15/2014            
8
#MODIFIED ON: 12/23/2014            
9 9
#Version: 3
10 10
#PROJECT: Environmental Layers project  
11 11
#TO DO:
......
20 20
#source /nobackupp4/aguzman4/climateLayers/sharedModules/etc/environ.sh
21 21
#MODULEPATH=$MODULEPATH:/nex/modules/files
22 22
#module load /nex/modules/files/pythonkits/gdal_1.10.0_python_2.7.3_nex
23
# These are the names and number for the current subset regions used for global runs:
24
#reg1 - North America (NAM)
25
#reg2 - Western Europe (WE)
26
#reg3 - Eastern Europe to East Asia (EE_EA)
27
#reg4 - South America (SAM)
28
#reg5 - Africa (AF)
29
#reg6 - South East Asia and Australia (SEA_AUS)
23 30

  
24 31
#################################################################################################
25 32

  
......
459 466
##############################
460 467
#### Parameters and constants  
461 468

  
462
#in_dir1 <- "/nobackupp4/aguzman4/climateLayers/output1000x3000_km/"
463
#in_dir1 <- "/nobackupp6/aguzman4/climateLayers/output1500x4500_km/"
464
in_dir1 <- "/nobackupp6/aguzman4/climateLayers/output1000x3000_km/reg2"
465
#/nobackupp4/aguzman4/climateLayers/output10Deg/reg1/finished.txt
466
in_dir_list <- list.dirs(path=in_dir1,recursive=FALSE) #get the list regions processed for this run
467
#in_dir_list <- in_dir_list[c(3,4)] #get the list regions processed for this run
469
#reg1 (North Am), reg2(Europe),reg3(Asia), reg4 (South Am), reg5 (Africa), reg6 (Australia-Asia)
470
#master directory containing the definition of tile size and tiles predicted
471
in_dir1 <- "/nobackupp4/aguzman4/climateLayers/output1000x3000_km/"
472

  
473
region_names <- c("reg2","reg6") #selected region names
468 474

  
469
#if(basename(in_dir_list)[[1]]=="reg?") #add later
470
#in_dir_list_all  <- lapply(in_dir_list,function(x){list.dirs(path=x,recursive=F)})
471
#in_dir_list_all <- in_dir_list
472
#in_dir_list <- list.dirs(path=in_dir_reg,recursive=FALSE) #get the list of tiles/directories with outputs 
473
#in_dir_list <- unlist(in_dir_list_all[c(2)]) #only region 3 has informatation at this stage
474
#in_dir_list <- unlist(in_dir_list_all) #[c(2)]) #only region 3 has informatation at this stage
475
in_dir_list <- list.dirs(path=in_dir1,recursive=FALSE) #get the list regions processed for this run
476
#basename(in_dir_list)
477
in_dir_list<- lapply(region_names,FUN=function(x,y){y[grep(x,basename(y),invert=FALSE)]},
478
                                               y=in_dir_list) 
475 479

  
480
in_dir_list_all  <- lapply(in_dir_list,function(x){list.dirs(path=x,recursive=F)})
481
in_dir_list <- unlist(in_dir_list_all)
476 482
#in_dir_list <- in_dir_list[grep("bak",basename(basename(in_dir_list)),invert=TRUE)] #the first one is the in_dir1
477 483
in_dir_subset <- in_dir_list[grep("subset",basename(in_dir_list),invert=FALSE)] #select directory with shapefiles...
478 484
in_dir_shp <- file.path(in_dir_subset,"shapefiles")
......
481 487
in_dir_reg <- in_dir_list[grep(".*._.*.",basename(in_dir_list),invert=FALSE)] #select directory with shapefiles...
482 488
#in_dir_reg <- in_dir_list[grep("july_tiffs",basename(in_dir_reg),invert=TRUE)] #select directory with shapefiles...
483 489
in_dir_list <- in_dir_reg
490

  
484 491
#Models used.
485 492
#list_models<-c("y_var ~ s(lat,lon,k=4) + s(elev_s,k=3) + s(LST,k=3)",
486 493
#               "y_var ~ s(lat,lon,k=5) + s(elev_s,k=3) + s(LST,k=3)",
487 494
#               "y_var ~ s(lat,lon,k=8) + s(elev_s,k=4) + s(LST,k=4)",
488
  
489
  
490
#in_dir_list <- file.path(in_dir1,read.table(file.path(in_dir1,"processed.txt"))$V1)
491
#in_dir_list <- as.list(in_dir_list[-1])
495
    
492 496
in_dir_list <- in_dir_list[grep("bak",basename(basename(in_dir_list)),invert=TRUE)] #the first one is the in_dir1
493
#in_dir_shp <- in_dir_list[grep("shapefiles",basename(in_dir_list),invert=FALSE)] #select directory with shapefiles...
494
in_dir_shp <- in_dir_shp[grep("subset_bak",basename(dirname(in_dir_shp)),invert=TRUE)] #the first one is the in_dir1
495

  
496
#in_dir_shp <- "/nobackupp4/aguzman4/climateLayers/output10Deg/reg1/subset/shapefiles/"
497
#in_dir_shp <- "/nobackupp4/aguzman4/climateLayers/output20Deg/reg2/subset/shapefiles"
497
#list of shapefiles used to define tiles
498 498
in_dir_shp_list <- list.files(in_dir_shp,".shp",full.names=T)
499 499

  
500
#in_dir_list <- in_dir_list[grep("shapefiles",basename(in_dir_list),invert=TRUE)] 
501
#the first one is the in_dir1
502
# the last directory contains shapefiles 
503 500
y_var_name <- "dailyTmax"
504 501
interpolation_method <- c("gam_CAI")
505
out_prefix<-"run10_global_analyses_12152014"
502
out_prefix<-"run10_global_analyses_12232014"
506 503

  
507 504
#out_dir<-"/data/project/layers/commons/NEX_data/" #On NCEAS Atlas
508 505
out_dir <- "/nobackup/bparmen1/" #on NEX
......
522 519
                                   
523 520
CRS_locs_WGS84 <- CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #Station coords WGS84
524 521

  
525
day_to_mosaic <- c("20100101","20100901")
522
#day_to_mosaic <- c("20100101","20100901")
523
day_to_mosaic <- c("20100101","20100102","20100103","20100104","20100105",
524
                   "20100301","20100302","20100303","20100304","20100305",
525
                   "20100501","20100502","20100503","20100504","20100505",
526
                   "20100701","20100702","20100703","20100704","20100705",
527
                   "20100901","20100902","20100903","20100904","20100905",
528
                   "20101101","20101102","20101103","20101104","20101105")
529
#day_to_mosaic <- NULL #if day to mosaic is null then mosaic all dates?
530

  
526 531
file_format <- ".tif" #format for mosaiced files
527 532
NA_flag_val <- -9999  #No data value
528 533

  
529
#day_to_mosaic <- NULL #if day to mosaic is null then mosaic all dates
530

  
531 534
##raster_prediction object : contains testing and training stations with RMSE and model object
532 535

  
533
#l_shp <- lapply(1:length(in_dir_shp_list),FUN=function(i){paste(strsplit(in_dir_shp_list[i],"_")[[1]][2:3],collapse="_")})
534
#match(l_shp,in_dir_list)
535
#in_dir_list[match(in_dir_list,l_shp]
536

  
537 536
list_raster_obj_files <- lapply(in_dir_list,FUN=function(x){list.files(path=x,pattern="^raster_prediction_obj.*.RData",full.names=T)})
538 537
basename(dirname(list_raster_obj_files[[1]]))
539 538
list_names_tile_coord <- lapply(list_raster_obj_files,FUN=function(x){basename(dirname(x))})
......
586 585
#### Table 1: Average accuracy metrics
587 586

  
588 587
#can use a maximum of 6 cores on the NEX Bridge
589
#For 177 tiles but only xx RData boject it takes xxx min
588
#For 43 tiles but only xx RData boject it takes xxx min
590 589
#summary_metrics_v_list <- mclapply(list_raster_obj_files[5:6],FUN=function(x){try( x<- load_obj(x)); try(x[["summary_metrics_v"]]$avg)},mc.preschedule=FALSE,mc.cores = 2)                           
591 590

  
592 591
summary_metrics_v_list <- mclapply(list_raster_obj_files,FUN=function(x){try( x<- load_obj(x)); try(x[["summary_metrics_v"]]$avg)},mc.preschedule=FALSE,mc.cores = 6)                           

Also available in: Unified diff