Revision c7192b5a
Added by Adam M. Wilson over 12 years ago
climate/research/LST_landcover_exploration.R | ||
---|---|---|
13 | 13 |
library(rasterVis) |
14 | 14 |
library(heR.Misc) |
15 | 15 |
library(spBayes) |
16 |
|
|
16 |
library(xtable) |
|
17 |
library(ellipse) # for correlation matrix |
|
18 |
library(maptools) # for rgshhs |
|
17 | 19 |
|
18 | 20 |
X11.options(type="X11") |
19 | 21 |
|
... | ... | |
53 | 55 |
NS=sin(subset(topo,subset="slope")*pi/180)*cos(subset(topo,subset="aspect")*pi/180);names(NS)="northsouth" |
54 | 56 |
EW=sin(subset(topo,subset="slope")*pi/180)*sin(subset(topo,subset="aspect")*pi/180);names(EW)="eastwest" |
55 | 57 |
slope=sin(subset(topo,subset="slope")*pi/180);names(slope)="slope" |
56 |
topo2=stack(subset(topo,"dem"),EW,NS,slope) |
|
58 |
|
|
59 |
## load coastline data |
|
60 |
roill=bbox(projectExtent(topo,CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs"))) |
|
61 |
coast=getRgshhsMap("/home/adamw/acrobates/Global/GSHHS_shp/gshhs/gshhs_f.b",xlim=c(roill[1,1],roill[1,2]),ylim=c(roill[2,1],roill[2,2])) |
|
62 |
coast=as(as(coast,"SpatialLines"),"SpatialLinesDataFrame") |
|
63 |
coast@data=data.frame(id=1:length(coast@lines)) #convert to dataframe |
|
64 |
coast=spTransform(coast,projs) |
|
65 |
rcoast=rasterize(coast,topo) |
|
66 |
dist=distance(rcoast)/1000 #get distance to coast and convert to km |
|
67 |
### transform distance to coast using b-log(dist), where b \approx log(DTC of the farthest point on earth from the sea) |
|
68 |
### Garcia-Castellanos, Daniel, and Umberto Lombardo. 2007. “Poles of Inaccessibility: A Calculation Algorithm for the Remotest Places on Earth.” Scottish Geographical Journal 123 (3): 227–233. doi:10.1080/14702540801897809. |
|
69 |
### farthest point is ~2510km from ocean |
|
70 |
log(2510) #round up to 8 to be sure we won't get negative numbers |
|
71 |
dist2=brick(dist,calc(dist,function(x) (8-log(x+1)))) |
|
72 |
layerNames(dist2)=c("DTCkm","logDTCkm") |
|
73 |
colnames(dist2@data@values)=c("DTCkm","logDTCkm") |
|
74 |
topo2=stack(subset(topo,"dem"),EW,NS,slope,dist2) |
|
57 | 75 |
|
58 | 76 |
## create binned elevation for stratified sampling |
59 | 77 |
demc=quantile(subset(topo,subset="dem")) |
60 | 78 |
demb=calc(subset(topo,subset="dem"),function(x) as.numeric(cut(x,breaks=demc))) |
61 | 79 |
names(demb)="demb" |
62 |
#topo=brick(list(topo,demb))
|
|
80 |
##topo=brick(list(topo,demb))
|
|
63 | 81 |
|
64 | 82 |
|
65 | 83 |
### load the lulc data as a brick |
... | ... | |
94 | 112 |
|
95 | 113 |
###################################### |
96 | 114 |
## compare LULC with station data |
115 |
st2=SpatialPointsDataFrame(st2,data=cbind.data.frame(st2@data,demb=extract(demb,st2),extract(topo,st2),extract(topo2,st2),extract(lulc,st2),extract(lst,st2))) |
|
97 | 116 |
stlulc=extract(lulc,st2) #overlay stations and LULC values |
98 | 117 |
st2$lulc=do.call(c,lapply(apply(stlulc,1,function(x) which.max(x)),function(x) ifelse(is.null(names(x)),NA,names(x)))) |
99 | 118 |
|
... | ... | |
106 | 125 |
s2=spsample(as(topo,"SpatialGrid"),n=n2,type="regular") |
107 | 126 |
|
108 | 127 |
|
109 |
s=SpatialPointsDataFrame(s,data=cbind.data.frame(extract(topo,s),extract(topo2,s),extract(lulc,s),extract(lst,s))) |
|
128 |
s=SpatialPointsDataFrame(s,data=cbind.data.frame(x=coordinates(s)[,1],y=coordinates(s)[,2],demb=extract(demb,s),extract(topo,s),extract(topo2,s),extract(lulc,s),extract(lst,s)))
|
|
110 | 129 |
### drop areas with no LST data |
111 | 130 |
#s=s[!is.na(s$Aug),] |
112 | 131 |
s=s[apply(s@data,1,function(x) all(!is.na(x))),] |
113 | 132 |
|
114 | 133 |
### add majority rules lulc for exploration |
115 | 134 |
s$lulc=apply(s@data[,colnames(s@data)%in%lulct$class],1,function(x) (colnames(s@data)[colnames(s@data)%in%lulct$class])[which.max(x)]) |
135 |
save(s,file=paste("output/mod_sample.Rdata",sep="")) |
|
116 | 136 |
|
117 | 137 |
|
118 | 138 |
### spatial regression to fit lulc coefficients |
139 |
Sys.setenv(MKL_NUM_THREADS=24) |
|
140 |
system("export MKL_NUM_THREADS=24") |
|
119 | 141 |
|
120 |
niter=1250 |
|
121 |
mclapply(months,function(m){
|
|
142 |
niter=12500
|
|
143 |
lapply(months,function(m){ |
|
122 | 144 |
print(paste("################################### Starting month ",m)) |
123 |
f1=formula(paste(m,"~Shrub+Grass+Crop+Mosaic+Urban+Barren+Snow+Wetland+dem+eastwest+northsouth",sep="")) |
|
145 |
f1=formula(paste(m,"~logDTCkm+y+Shrub+Grass+Crop+Mosaic+Urban+Barren+Snow+Wetland+dem+eastwest+northsouth",sep=""))
|
|
124 | 146 |
m1=spLM(f1,data=s@data,coords=coordinates(s),knots=coordinates(s2), |
125 | 147 |
starting=list("phi"=0.6,"sigma.sq"=1, "tau.sq"=1), |
126 | 148 |
sp.tuning=list("phi"=0.01, "sigma.sq"=0.05, "tau.sq"=0.05), |
127 | 149 |
priors=list("phi.Unif"=c(0.3, 3), "sigma.sq.IG"=c(2, 1), "tau.sq.IG"=c(2, 1)), |
128 | 150 |
cov.model="exponential", |
129 |
n.samples=niter, verbose=TRUE, n.report=100)
|
|
151 |
n.samples=niter,sub.samples=c(2500,niter,10),verbose=TRUE, n.report=100)
|
|
130 | 152 |
assign(paste("mod_",m,sep=""),m1) |
131 | 153 |
save(list=paste("mod_",m,sep=""),file=paste("output/mod_",m,".Rdata",sep="")) |
132 | 154 |
}) |
133 | 155 |
|
156 |
### Read in results |
|
157 |
load(paste("output/mod_sample.Rdata",sep="")) |
|
158 |
ms=lapply(months,function(m) {print(m); load(paste("output/mod_",m,".Rdata",sep="")) ; get(paste("mod_",m,sep="")) }) |
|
159 |
|
|
160 |
### generate summaries |
|
161 |
ms1=do.call(rbind.data.frame,lapply(1:length(ms),function(i){ |
|
162 |
mi=ms[[i]] |
|
163 |
m1.s=mcmc(t(mi$p.samples),start=round(niter/4),thin=1) |
|
164 |
m1.s2=as.data.frame(t(apply(m1.s,1,quantile,c(0.025,0.5,0.975)))) |
|
165 |
colnames(m1.s2)=c("Q2.5","Q50","Q97.5") |
|
166 |
m1.s2$parm=rownames(m1.s) |
|
167 |
m1.s2$month=factor(months[i],levels=months,ordered=T) |
|
168 |
m1.s2$type=ifelse(m1.s2$parm%in%c("tau.sq","sigma.sq","phi"),"Spatial",ifelse(m1.s2$parm%in%c("(Intercept)","eastwest","northsouth","dem","logDTCkm","y"),"Topography","LULC")) |
|
169 |
return(m1.s2) |
|
170 |
})) |
|
171 |
## drop spatial parameters |
|
172 |
#ms1=ms1[!ms1$type%in%"Spatial",] |
|
173 |
## Convert dem to degrees/km to make it comparable to other topographical parameters |
|
174 |
#ms1[ms1$parm%in%c("x","y","dem"),c("Q2.5","Q50","Q97.5")]=ms1[ms1$parm%in%c("x","y","dem"),c("Q2.5","Q50","Q97.5")] |
|
134 | 175 |
|
135 |
m1.s=mcmc(t(m1$p.samples),start=round(niter/4),thin=1) |
|
136 |
bwplot(value~X2,melt(as.matrix(m1$p.samples)[,!colnames(m1$p.samples)%in%c("(Intercept)","sigma.sq","tau.sq","phi","northsouth","dem","eastwest")])) |
|
137 |
densityplot(m1$p.samples) |
|
138 | 176 |
|
139 | 177 |
### load oregon boundary for comparison |
140 | 178 |
roi=spTransform(as(readOGR("data/regions/Test_sites/Oregon.shp","Oregon"),"SpatialLines"),projs) |
... | ... | |
156 | 194 |
main="Topographic Variables",sub="")+ |
157 | 195 |
layer(sp.lines(roi, lwd=1.2, col='black')) |
158 | 196 |
|
197 |
|
|
198 |
## DEM |
|
199 |
at=unique(quantile(as.matrix(subset(topo2,c("dem"))),seq(0,1,length=100),na.rm=T)) |
|
200 |
levelplot(subset(topo2,c("dem")),at=at,col.regions=bgyr(length(at)), |
|
201 |
main="Elevation",sub="",margin=F)+ |
|
202 |
layer(sp.lines(roi, lwd=1.2, col='black')) |
|
203 |
|
|
204 |
## DTC |
|
205 |
at=unique(quantile(as.matrix(subset(topo2,c("logDTCkm"))),seq(0,1,length=100),na.rm=T)) |
|
206 |
levelplot(subset(topo2,c("logDTCkm")),at=at,col.regions=bgyr(length(at)), |
|
207 |
main="Elevation",sub="",margin=F)+ |
|
208 |
layer(sp.lines(roi, lwd=1.2, col='black')) |
|
209 |
|
|
159 | 210 |
#LST |
160 | 211 |
at=quantile(as.matrix(lst),seq(0,1,length=100),na.rm=T) |
161 | 212 |
levelplot(lst,at=at,col.regions=bgyr(length(at)), |
... | ... | |
163 | 214 |
layer(sp.lines(roi, lwd=1.2, col='black')) |
164 | 215 |
|
165 | 216 |
|
166 |
### show fitted values |
|
167 |
spplot(s,zcol="dem")+layer(sp.lines(roi,lwd=1.2,col="black"))+layer(sp.points(s2,col="blue",pch=13,cex=2)) |
|
168 |
|
|
169 |
histogram(~value|variable,data=melt(s@data[,colnames(s@data)%in%lulct$class])) |
|
170 |
|
|
171 |
bwplot(lulc~value|variable,data=melt(s@data,id.vars="lulc",measure.vars=layerNames(lst)),horizontal=T) |
|
172 |
|
|
173 |
|
|
174 | 217 |
xyplot(value~dem|variable,groups=lulc,melt(s@data[,c("dem","lulc",months)],id.vars=c("dem","lulc")),pch=16,cex=.5, |
175 | 218 |
main="Month-by-month scatterplots of Elevation and LST, grouped by LULC", |
176 |
sub="One point per (subsetted) pixel, per month"
|
|
219 |
sub="One point per pixel, per month",ylab="LST",
|
|
177 | 220 |
par.settings = list(superpose.symbol = list(pch=16,cex=.5)),auto.key=list(space="right",title="LULC"))+ |
178 | 221 |
layer(panel.abline(lm(y~x),col="red"))+ |
179 | 222 |
layer(panel.text(500,50,bquote(beta==.(round(coefficients(lm(y~x))[2],4))))) |
180 | 223 |
|
224 |
## just forest, grouped by distance to coast |
|
225 |
xyplot(value~dem|variable,groups=cut(DTCkm,breaks=c(0,300,1000)),melt(s@data[s$lulc=="Forest",c("DTCkm","dem","lulc",months)],id.vars=c("DTCkm","dem","lulc")),pch=16,cex=.5, |
|
226 |
main="Month-by-month scatterplots of Elevation and LST, grouped by Distance to Coast", |
|
227 |
sub="Showing only forest class",ylab="LST", |
|
228 |
par.settings = list(superpose.symbol = list(pch=16,cex=.5)),auto.key=list(space="right",title="Distance to \n Coast (km)"))+ |
|
229 |
layer(panel.abline(lm(y~x),col="red"))+ |
|
230 |
layer(panel.text(500,50,bquote(beta==.(round(coefficients(lm(y~x))[2],4))))) |
|
181 | 231 |
|
232 |
useOuterStrips(xyplot(value~dem|variable+lulc,groups=cut(DTCkm,breaks=c(0,300,1000)), |
|
233 |
melt(s@data[s$lulc!="Snow",c("DTCkm","dem","lulc",months)],id.vars=c("DTCkm","dem","lulc")),pch=16,cex=.5, |
|
234 |
main="Month-by-month scatterplots of Elevation and LST, grouped by LULC and colored by distance to coast", |
|
235 |
sub="One point per pixel, per month",ylab="LST", |
|
236 |
par.settings = list(superpose.symbol = list(pch=16,cex=.5)),auto.key=list(space="right",title="Distance to \n Coast (km)")))+ |
|
237 |
layer(panel.abline(lm(y~x),col="red")) |
|
182 | 238 |
|
183 | 239 |
|
184 | 240 |
|
241 |
########################################## |
|
242 |
### Model output |
|
243 |
|
|
244 |
### show fitted values |
|
245 |
spplot(s,zcol="demb",col.regions=terrain.colors(5),cex=.5)+layer(sp.lines(roi,lwd=1.2,col="black"))+ |
|
246 |
layer(sp.points(s2,col="blue",pch=13,cex=2,lwd=2))+ |
|
247 |
layer(sp.points(st2,col="black",lwd=1.5)) |
|
248 |
|
|
249 |
|
|
250 |
## look at correlation of LULC variables |
|
251 |
lulct=s@data[,colnames(s@data)[colnames(s@data)%in%unique(s$lulc)]] |
|
252 |
lulcc=cor(lulct)[order(cor(lulct)[1,]),order(cor(lulct)[1,])] |
|
253 |
round(cor(lulct),2) |
|
254 |
#print(xtable(round(cor(lulct),2),include.row.names=F)) |
|
255 |
plotcorr(lulcc,col=colors <- c("#A50F15","#DE2D26","#FB6A4A","#FCAE91","#FEE5D9","white","#EFF3FF","#BDD7E7","#6BAED6","#3182BD","#08519C")[5*lulcc+6], |
|
256 |
main="Correlation Matrix") |
|
257 |
|
|
258 |
t1=as.data.frame(table(s$lulc));colnames(t1)=c("class","samplefreq") |
|
259 |
t1$sampleprop=t1$samplefreq/sum(t1$samplefreq) |
|
260 |
t2=as.data.frame(table(st2$lulc)) |
|
261 |
t1$stationfreq=0 |
|
262 |
t1$stationfreq[t1$class%in%t2$Var1]=t2$Freq[match(t2$Var1,t1$class[t1$class%in%t2$Var1])] |
|
263 |
t1$stationprop=t1$stationfreq/sum(t1$stationfreq) |
|
264 |
print(xtable(t1[,c(1,3,5)]),include.rownames=F) |
|
265 |
|
|
266 |
### two plots of model parameters by month to show the effects of LULC and topography on LST |
|
267 |
## Spatial |
|
268 |
xyplot(Q50~month|parm,data=ms1[ms1$type=="Spatial",],panel=function(x,y,subscripts){ |
|
269 |
tms1=ms1[ms1$type=="Spatial",][subscripts,] |
|
270 |
panel.segments(tms1$month,tms1$Q2.5,tms1$month,tms1$Q97.5,groups=tms1$parm,subscripts=1:nrow(tms1)) |
|
271 |
panel.xyplot(tms1$month,tms1$Q50,pch=16,type="l") |
|
272 |
panel.abline(h=0,lty="dashed",col="grey") |
|
273 |
},auto.key=list(space="right"),par.settings = list(superpose.symbol = list(pch=16,cex=.5,col=1:15),superpose.line=list(col=1:15)), |
|
274 |
subscripts=T,scales=list(y=list(relation="free",rot=90)),ylab="Parameter Coefficient (slope) with 95% Credible Intervals",xlab="Month", |
|
275 |
main="Spatial Parameters", |
|
276 |
sub="") |
|
277 |
|
|
278 |
## LULC |
|
279 |
xyplot(Q50~month,groups=parm,data=ms1[ms1$type=="LULC",],panel=function(x,y,subscripts){ |
|
280 |
tms1=ms1[ms1$type=="LULC",][subscripts,] |
|
281 |
sig=ifelse(tms1$Q2.5<0&tms1$Q97.5<0|tms1$Q2.5>0&tms1$Q97.5>0,"red","black") |
|
282 |
panel.segments(tms1$month,tms1$Q2.5,tms1$month,tms1$Q97.5,groups=tms1$parm,subscripts=1:nrow(tms1)) |
|
283 |
panel.xyplot(tms1$month,tms1$Q50,groups=tms1$parm,pch=16,type="l",subscripts=1:nrow(tms1)) |
|
284 |
panel.abline(h=0,lty="dashed",col="grey") |
|
285 |
},auto.key=list(space="right"),par.settings = list(superpose.symbol = list(pch=16,cex=.5,col=1:15),superpose.line=list(col=1:15)), |
|
286 |
subscripts=T,scales=list(y=list(relation="free",rot=90)),ylab="Parameter Coefficient (slope) with 95% Credible Intervals",xlab="Month", |
|
287 |
main="Effects of LULC on LST", |
|
288 |
sub="Coefficients are unstandardized and represent the change in LST expected with a 1% increase in that class from 100% Forest") |
|
289 |
|
|
290 |
## Topography |
|
291 |
xyplot(Q50~month|parm,data=ms1[ms1$type=="Topography",],panel=function(x,y,subscripts){ |
|
292 |
tms1=ms1[ms1$type=="Topography",][subscripts,] |
|
293 |
panel.segments(tms1$month,tms1$Q2.5,tms1$month,tms1$Q97.5,subscripts=1:nrow(tms1)) |
|
294 |
panel.xyplot(tms1$month,tms1$Q50,groups=tms1$parm,pch=16,type="l",subscripts=1:nrow(tms1)) |
|
295 |
panel.abline(h=0,lty="dashed",col="grey") |
|
296 |
},auto.key=list(space="right"),par.settings = list(superpose.symbol = list(pch=16,cex=.5,col=1:15),superpose.line=list(col=1:15)), |
|
297 |
subscripts=T,scales=list(y=list(relation="free",rot=90)),ylab="Parameter Coefficient (slope) with 95% Credible Intervals",xlab="Month", |
|
298 |
main="Effects of Topography on LST", |
|
299 |
sub="Coefficients are unstandardized. Intercept is degrees C, eastwest and northsouth range \n from -1 (90 degree slope) to 0 (flat) to 1 (90 degree slope), and dem is m \n logDTCkm is in log(km), and y (lat) is m") |
|
300 |
|
|
301 |
### Capture same pattern using only station data? |
|
302 |
|
|
303 |
|
|
304 |
dev.off() |
|
305 |
|
|
306 |
shrinkpdf<-function(pdf,maxsize=1,suffix="_small",verbose=T){ |
|
307 |
require(multicore) |
|
308 |
wd=getwd() |
|
309 |
td=paste(tempdir(),"/pdf",sep="") |
|
310 |
if(!file.exists(td)) dir.create(td) |
|
311 |
if(verbose) print("Performing initial compression") |
|
312 |
setwd(td) |
|
313 |
if(verbose) print("Splitting the PDF to parallelize the processing") |
|
314 |
system(paste("pdftk ",wd,"/",pdf," burst",sep="")) |
|
315 |
mclapply(list.files(td,pattern="pdf$"),function(f){ |
|
316 |
## loop through all pages, perform compression with with ps2pdf |
|
317 |
if(verbose) print("Performing initial compression") |
|
318 |
system(paste("ps2pdf -dUseFlateCompression=true ",td,"/",f," ",td,"/compressed_",f,sep="")) |
|
319 |
file.rename(paste(td,"/compressed_",f,sep=""),paste(td,"/",f,sep="")) |
|
320 |
## get sysmte size |
|
321 |
size=file.info(paste(td,"/",f,sep=""))$size*0.000001 #get sizes of individual pages |
|
322 |
toobig=size>=maxsize |
|
323 |
if(verbose&toobig) print(paste("Resizing ",basename(paste(td,"/",f,sep="")),sep="")) |
|
324 |
system(paste("gs -dBATCH -dTextAlphaBits=4 -dNOPAUSE -r300 -q -sDEVICE=png16m -sOutputFile=- -q ",paste(td,"/",f,sep="")," | convert -background transparent -quality 100 -density 300 - ",f,sep="")) |
|
325 |
}) |
|
326 |
if(verbose) print("Compiling the final pdf") |
|
327 |
setwd(wd) |
|
328 |
system(paste("gs -dBATCH -dNOPAUSE -q -sDEVICE=pdfwrite -sOutputFile=",strsplit(pdf,".",fixed=T)[[1]][1],suffix,".pdf ",td,"/*.pdf",sep="")) |
|
329 |
file.remove(list.files(td,full=T)) |
|
330 |
if(verbose) print("Finished!!") |
|
331 |
} |
|
332 |
|
|
333 |
shrinkpdf("output/lst_lulc.pdf") |
Also available in: Unified diff
More updates to output plots