Project

General

Profile

« Previous | Next » 

Revision c7192b5a

Added by Adam M. Wilson over 12 years ago

More updates to output plots

View differences:

climate/research/LST_landcover_exploration.R
13 13
library(rasterVis)                                                                                                                                                                   
14 14
library(heR.Misc)
15 15
library(spBayes)
16

  
16
library(xtable)
17
library(ellipse) # for correlation matrix
18
library(maptools) # for rgshhs
17 19

  
18 20
X11.options(type="X11")
19 21

  
......
53 55
NS=sin(subset(topo,subset="slope")*pi/180)*cos(subset(topo,subset="aspect")*pi/180);names(NS)="northsouth"
54 56
EW=sin(subset(topo,subset="slope")*pi/180)*sin(subset(topo,subset="aspect")*pi/180);names(EW)="eastwest"
55 57
slope=sin(subset(topo,subset="slope")*pi/180);names(slope)="slope"
56
topo2=stack(subset(topo,"dem"),EW,NS,slope)
58

  
59
## load coastline data
60
roill=bbox(projectExtent(topo,CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs")))
61
coast=getRgshhsMap("/home/adamw/acrobates/Global/GSHHS_shp/gshhs/gshhs_f.b",xlim=c(roill[1,1],roill[1,2]),ylim=c(roill[2,1],roill[2,2]))
62
coast=as(as(coast,"SpatialLines"),"SpatialLinesDataFrame")
63
coast@data=data.frame(id=1:length(coast@lines))  #convert to dataframe
64
coast=spTransform(coast,projs)
65
rcoast=rasterize(coast,topo)
66
dist=distance(rcoast)/1000 #get distance to coast and convert to km
67
### transform distance to coast using b-log(dist), where b \approx log(DTC of the farthest point on earth from the sea)
68
### Garcia-Castellanos, Daniel, and Umberto Lombardo. 2007. “Poles of Inaccessibility: A Calculation Algorithm for the Remotest Places on Earth.” Scottish Geographical Journal 123 (3): 227–233. doi:10.1080/14702540801897809.
69
### farthest point is ~2510km from ocean
70
log(2510) #round up to 8 to be sure we won't get negative numbers
71
dist2=brick(dist,calc(dist,function(x) (8-log(x+1))))
72
layerNames(dist2)=c("DTCkm","logDTCkm")
73
colnames(dist2@data@values)=c("DTCkm","logDTCkm")
74
topo2=stack(subset(topo,"dem"),EW,NS,slope,dist2)
57 75

  
58 76
## create binned elevation for stratified sampling
59 77
demc=quantile(subset(topo,subset="dem"))
60 78
demb=calc(subset(topo,subset="dem"),function(x) as.numeric(cut(x,breaks=demc)))
61 79
names(demb)="demb"
62
                                        #topo=brick(list(topo,demb))
80
##topo=brick(list(topo,demb))
63 81

  
64 82

  
65 83
### load the lulc data as a brick
......
94 112

  
95 113
######################################
96 114
## compare LULC with station data
115
st2=SpatialPointsDataFrame(st2,data=cbind.data.frame(st2@data,demb=extract(demb,st2),extract(topo,st2),extract(topo2,st2),extract(lulc,st2),extract(lst,st2)))
97 116
stlulc=extract(lulc,st2) #overlay stations and LULC values
98 117
st2$lulc=do.call(c,lapply(apply(stlulc,1,function(x) which.max(x)),function(x) ifelse(is.null(names(x)),NA,names(x))))
99 118

  
......
106 125
s2=spsample(as(topo,"SpatialGrid"),n=n2,type="regular")
107 126

  
108 127
         
109
s=SpatialPointsDataFrame(s,data=cbind.data.frame(extract(topo,s),extract(topo2,s),extract(lulc,s),extract(lst,s)))
128
s=SpatialPointsDataFrame(s,data=cbind.data.frame(x=coordinates(s)[,1],y=coordinates(s)[,2],demb=extract(demb,s),extract(topo,s),extract(topo2,s),extract(lulc,s),extract(lst,s)))
110 129
### drop areas with no LST data
111 130
#s=s[!is.na(s$Aug),]
112 131
s=s[apply(s@data,1,function(x) all(!is.na(x))),]
113 132

  
114 133
###  add majority rules lulc for exploration
115 134
s$lulc=apply(s@data[,colnames(s@data)%in%lulct$class],1,function(x) (colnames(s@data)[colnames(s@data)%in%lulct$class])[which.max(x)])
135
save(s,file=paste("output/mod_sample.Rdata",sep=""))
116 136

  
117 137

  
118 138
### spatial regression to fit lulc coefficients
139
Sys.setenv(MKL_NUM_THREADS=24)
140
system("export MKL_NUM_THREADS=24")
119 141

  
120
niter=1250
121
mclapply(months,function(m){
142
niter=12500
143
lapply(months,function(m){
122 144
  print(paste("###################################   Starting month ",m))
123
  f1=formula(paste(m,"~Shrub+Grass+Crop+Mosaic+Urban+Barren+Snow+Wetland+dem+eastwest+northsouth",sep=""))
145
  f1=formula(paste(m,"~logDTCkm+y+Shrub+Grass+Crop+Mosaic+Urban+Barren+Snow+Wetland+dem+eastwest+northsouth",sep=""))
124 146
  m1=spLM(f1,data=s@data,coords=coordinates(s),knots=coordinates(s2),
125 147
    starting=list("phi"=0.6,"sigma.sq"=1, "tau.sq"=1),
126 148
    sp.tuning=list("phi"=0.01, "sigma.sq"=0.05, "tau.sq"=0.05),
127 149
    priors=list("phi.Unif"=c(0.3, 3), "sigma.sq.IG"=c(2, 1), "tau.sq.IG"=c(2, 1)),
128 150
    cov.model="exponential",
129
    n.samples=niter, verbose=TRUE, n.report=100)
151
    n.samples=niter,sub.samples=c(2500,niter,10),verbose=TRUE, n.report=100)
130 152
  assign(paste("mod_",m,sep=""),m1)
131 153
  save(list=paste("mod_",m,sep=""),file=paste("output/mod_",m,".Rdata",sep=""))
132 154
})
133 155

  
156
### Read in results
157
load(paste("output/mod_sample.Rdata",sep=""))
158
ms=lapply(months,function(m) {print(m); load(paste("output/mod_",m,".Rdata",sep="")) ; get(paste("mod_",m,sep="")) })
159

  
160
### generate summaries
161
ms1=do.call(rbind.data.frame,lapply(1:length(ms),function(i){
162
  mi=ms[[i]]
163
  m1.s=mcmc(t(mi$p.samples),start=round(niter/4),thin=1)
164
  m1.s2=as.data.frame(t(apply(m1.s,1,quantile,c(0.025,0.5,0.975))))
165
  colnames(m1.s2)=c("Q2.5","Q50","Q97.5")
166
  m1.s2$parm=rownames(m1.s)
167
  m1.s2$month=factor(months[i],levels=months,ordered=T)
168
  m1.s2$type=ifelse(m1.s2$parm%in%c("tau.sq","sigma.sq","phi"),"Spatial",ifelse(m1.s2$parm%in%c("(Intercept)","eastwest","northsouth","dem","logDTCkm","y"),"Topography","LULC"))
169
  return(m1.s2)
170
}))
171
## drop spatial parameters
172
#ms1=ms1[!ms1$type%in%"Spatial",]
173
## Convert dem to degrees/km to make it comparable to other topographical parameters
174
#ms1[ms1$parm%in%c("x","y","dem"),c("Q2.5","Q50","Q97.5")]=ms1[ms1$parm%in%c("x","y","dem"),c("Q2.5","Q50","Q97.5")]
134 175

  
135
m1.s=mcmc(t(m1$p.samples),start=round(niter/4),thin=1)
136
bwplot(value~X2,melt(as.matrix(m1$p.samples)[,!colnames(m1$p.samples)%in%c("(Intercept)","sigma.sq","tau.sq","phi","northsouth","dem","eastwest")]))
137
densityplot(m1$p.samples)
138 176

  
139 177
### load oregon boundary for comparison
140 178
roi=spTransform(as(readOGR("data/regions/Test_sites/Oregon.shp","Oregon"),"SpatialLines"),projs)
......
156 194
          main="Topographic Variables",sub="")+
157 195
  layer(sp.lines(roi, lwd=1.2, col='black'))
158 196

  
197

  
198
## DEM
199
at=unique(quantile(as.matrix(subset(topo2,c("dem"))),seq(0,1,length=100),na.rm=T))
200
levelplot(subset(topo2,c("dem")),at=at,col.regions=bgyr(length(at)),
201
          main="Elevation",sub="",margin=F)+
202
  layer(sp.lines(roi, lwd=1.2, col='black'))
203

  
204
## DTC
205
at=unique(quantile(as.matrix(subset(topo2,c("logDTCkm"))),seq(0,1,length=100),na.rm=T))
206
levelplot(subset(topo2,c("logDTCkm")),at=at,col.regions=bgyr(length(at)),
207
          main="Elevation",sub="",margin=F)+
208
  layer(sp.lines(roi, lwd=1.2, col='black'))
209

  
159 210
#LST
160 211
at=quantile(as.matrix(lst),seq(0,1,length=100),na.rm=T)
161 212
levelplot(lst,at=at,col.regions=bgyr(length(at)),
......
163 214
  layer(sp.lines(roi, lwd=1.2, col='black'))
164 215

  
165 216

  
166
### show fitted values
167
spplot(s,zcol="dem")+layer(sp.lines(roi,lwd=1.2,col="black"))+layer(sp.points(s2,col="blue",pch=13,cex=2))
168

  
169
histogram(~value|variable,data=melt(s@data[,colnames(s@data)%in%lulct$class]))
170

  
171
bwplot(lulc~value|variable,data=melt(s@data,id.vars="lulc",measure.vars=layerNames(lst)),horizontal=T)
172

  
173

  
174 217
xyplot(value~dem|variable,groups=lulc,melt(s@data[,c("dem","lulc",months)],id.vars=c("dem","lulc")),pch=16,cex=.5,
175 218
       main="Month-by-month scatterplots of Elevation and LST, grouped by LULC",
176
       sub="One point per (subsetted) pixel, per month"
219
       sub="One point per pixel, per month",ylab="LST",
177 220
       par.settings = list(superpose.symbol = list(pch=16,cex=.5)),auto.key=list(space="right",title="LULC"))+
178 221
  layer(panel.abline(lm(y~x),col="red"))+
179 222
  layer(panel.text(500,50,bquote(beta==.(round(coefficients(lm(y~x))[2],4)))))
180 223

  
224
## just forest, grouped by distance to coast
225
xyplot(value~dem|variable,groups=cut(DTCkm,breaks=c(0,300,1000)),melt(s@data[s$lulc=="Forest",c("DTCkm","dem","lulc",months)],id.vars=c("DTCkm","dem","lulc")),pch=16,cex=.5,
226
       main="Month-by-month scatterplots of Elevation and LST, grouped by Distance to Coast",
227
       sub="Showing only forest class",ylab="LST",
228
       par.settings = list(superpose.symbol = list(pch=16,cex=.5)),auto.key=list(space="right",title="Distance to \n Coast (km)"))+
229
  layer(panel.abline(lm(y~x),col="red"))+
230
  layer(panel.text(500,50,bquote(beta==.(round(coefficients(lm(y~x))[2],4)))))
181 231

  
232
useOuterStrips(xyplot(value~dem|variable+lulc,groups=cut(DTCkm,breaks=c(0,300,1000)),
233
                      melt(s@data[s$lulc!="Snow",c("DTCkm","dem","lulc",months)],id.vars=c("DTCkm","dem","lulc")),pch=16,cex=.5,
234
       main="Month-by-month scatterplots of Elevation and LST, grouped by LULC and colored by distance to coast",
235
       sub="One point per pixel, per month",ylab="LST",
236
       par.settings = list(superpose.symbol = list(pch=16,cex=.5)),auto.key=list(space="right",title="Distance to \n Coast (km)")))+
237
  layer(panel.abline(lm(y~x),col="red"))
182 238

  
183 239

  
184 240

  
241
##########################################
242
### Model output
243

  
244
### show fitted values
245
spplot(s,zcol="demb",col.regions=terrain.colors(5),cex=.5)+layer(sp.lines(roi,lwd=1.2,col="black"))+
246
  layer(sp.points(s2,col="blue",pch=13,cex=2,lwd=2))+
247
  layer(sp.points(st2,col="black",lwd=1.5))
248

  
249

  
250
## look at correlation of LULC variables
251
lulct=s@data[,colnames(s@data)[colnames(s@data)%in%unique(s$lulc)]]
252
lulcc=cor(lulct)[order(cor(lulct)[1,]),order(cor(lulct)[1,])]
253
round(cor(lulct),2)
254
#print(xtable(round(cor(lulct),2),include.row.names=F))
255
plotcorr(lulcc,col=colors <- c("#A50F15","#DE2D26","#FB6A4A","#FCAE91","#FEE5D9","white","#EFF3FF","#BDD7E7","#6BAED6","#3182BD","#08519C")[5*lulcc+6],
256
         main="Correlation Matrix")
257

  
258
t1=as.data.frame(table(s$lulc));colnames(t1)=c("class","samplefreq")
259
t1$sampleprop=t1$samplefreq/sum(t1$samplefreq)
260
t2=as.data.frame(table(st2$lulc))
261
t1$stationfreq=0
262
t1$stationfreq[t1$class%in%t2$Var1]=t2$Freq[match(t2$Var1,t1$class[t1$class%in%t2$Var1])]
263
t1$stationprop=t1$stationfreq/sum(t1$stationfreq)
264
print(xtable(t1[,c(1,3,5)]),include.rownames=F)
265

  
266
### two plots of model parameters by month to show the effects of LULC and topography on LST
267
## Spatial
268
xyplot(Q50~month|parm,data=ms1[ms1$type=="Spatial",],panel=function(x,y,subscripts){
269
  tms1=ms1[ms1$type=="Spatial",][subscripts,]
270
  panel.segments(tms1$month,tms1$Q2.5,tms1$month,tms1$Q97.5,groups=tms1$parm,subscripts=1:nrow(tms1))
271
  panel.xyplot(tms1$month,tms1$Q50,pch=16,type="l")
272
  panel.abline(h=0,lty="dashed",col="grey")
273
},auto.key=list(space="right"),par.settings = list(superpose.symbol = list(pch=16,cex=.5,col=1:15),superpose.line=list(col=1:15)),
274
       subscripts=T,scales=list(y=list(relation="free",rot=90)),ylab="Parameter Coefficient (slope) with 95% Credible Intervals",xlab="Month",
275
       main="Spatial Parameters",
276
       sub="")
277

  
278
## LULC
279
xyplot(Q50~month,groups=parm,data=ms1[ms1$type=="LULC",],panel=function(x,y,subscripts){
280
  tms1=ms1[ms1$type=="LULC",][subscripts,]
281
  sig=ifelse(tms1$Q2.5<0&tms1$Q97.5<0|tms1$Q2.5>0&tms1$Q97.5>0,"red","black")
282
  panel.segments(tms1$month,tms1$Q2.5,tms1$month,tms1$Q97.5,groups=tms1$parm,subscripts=1:nrow(tms1))
283
  panel.xyplot(tms1$month,tms1$Q50,groups=tms1$parm,pch=16,type="l",subscripts=1:nrow(tms1))
284
  panel.abline(h=0,lty="dashed",col="grey")
285
},auto.key=list(space="right"),par.settings = list(superpose.symbol = list(pch=16,cex=.5,col=1:15),superpose.line=list(col=1:15)),
286
       subscripts=T,scales=list(y=list(relation="free",rot=90)),ylab="Parameter Coefficient (slope) with 95% Credible Intervals",xlab="Month",
287
       main="Effects of LULC on LST",
288
       sub="Coefficients are unstandardized and represent the change in LST expected with a 1% increase in that class from 100% Forest")
289

  
290
## Topography
291
xyplot(Q50~month|parm,data=ms1[ms1$type=="Topography",],panel=function(x,y,subscripts){
292
  tms1=ms1[ms1$type=="Topography",][subscripts,]
293
  panel.segments(tms1$month,tms1$Q2.5,tms1$month,tms1$Q97.5,subscripts=1:nrow(tms1))
294
  panel.xyplot(tms1$month,tms1$Q50,groups=tms1$parm,pch=16,type="l",subscripts=1:nrow(tms1))
295
  panel.abline(h=0,lty="dashed",col="grey")
296
},auto.key=list(space="right"),par.settings = list(superpose.symbol = list(pch=16,cex=.5,col=1:15),superpose.line=list(col=1:15)),
297
       subscripts=T,scales=list(y=list(relation="free",rot=90)),ylab="Parameter Coefficient (slope) with 95% Credible Intervals",xlab="Month",
298
       main="Effects of Topography on LST",
299
       sub="Coefficients are unstandardized. Intercept is degrees C, eastwest and northsouth range \n from -1 (90 degree slope) to 0 (flat) to 1 (90 degree slope), and dem is m \n logDTCkm is in log(km), and y (lat) is m")
300

  
301
### Capture same pattern using only station data?
302

  
303

  
304
dev.off()
305

  
306
 shrinkpdf<-function(pdf,maxsize=1,suffix="_small",verbose=T){
307
   require(multicore)
308
   wd=getwd()
309
   td=paste(tempdir(),"/pdf",sep="")
310
   if(!file.exists(td)) dir.create(td)
311
   if(verbose) print("Performing initial compression")
312
   setwd(td)
313
   if(verbose) print("Splitting the PDF to parallelize the processing")
314
   system(paste("pdftk ",wd,"/",pdf," burst",sep=""))
315
   mclapply(list.files(td,pattern="pdf$"),function(f){
316
     ## loop through all pages, perform compression with with ps2pdf
317
     if(verbose) print("Performing initial compression")
318
       system(paste("ps2pdf -dUseFlateCompression=true ",td,"/",f," ",td,"/compressed_",f,sep=""))
319
        file.rename(paste(td,"/compressed_",f,sep=""),paste(td,"/",f,sep=""))
320
     ## get sysmte size
321
        size=file.info(paste(td,"/",f,sep=""))$size*0.000001 #get sizes of individual pages
322
        toobig=size>=maxsize
323
        if(verbose&toobig)  print(paste("Resizing ",basename(paste(td,"/",f,sep="")),sep=""))
324
        system(paste("gs -dBATCH -dTextAlphaBits=4 -dNOPAUSE -r300 -q -sDEVICE=png16m -sOutputFile=- -q ",paste(td,"/",f,sep="")," | convert -background transparent -quality 100 -density 300 - ",f,sep=""))
325
      })
326
        if(verbose) print("Compiling the final pdf")
327
        setwd(wd)
328
        system(paste("gs -dBATCH -dNOPAUSE -q -sDEVICE=pdfwrite -sOutputFile=",strsplit(pdf,".",fixed=T)[[1]][1],suffix,".pdf ",td,"/*.pdf",sep=""))
329
        file.remove(list.files(td,full=T))
330
       if(verbose) print("Finished!!")
331
}
332

  
333
shrinkpdf("output/lst_lulc.pdf")

Also available in: Unified diff