Project

General

Profile

« Previous | Next » 

Revision c8cfad3e

Added by Benoit Parmentier over 9 years ago

mosaicing test region 1, North America adding figures for two methods

View differences:

climate/research/oregon/interpolation/global_run_scalingup_mosaicing.R
5 5
#Analyses, figures, tables and data are also produced in the script.
6 6
#AUTHOR: Benoit Parmentier 
7 7
#CREATED ON: 04/14/2015  
8
#MODIFIED ON: 05/27/2015            
8
#MODIFIED ON: 06/03/2015            
9 9
#Version: 4
10 10
#PROJECT: Environmental Layers project     
11 11
#COMMENTS: analyses for run 10 global analyses,all regions 1500x4500km and other tiles
......
312 312

  
313 313
y_var_name <- "dailyTmax" #PARAM1
314 314
interpolation_method <- c("gam_CAI") #PARAM2
315
out_suffix <- "mosaic_run10_1500x4500_global_analyses_05272015" #PARAM3
315
out_suffix <- "mosaic_run10_1500x4500_global_analyses_06032015" #PARAM3
316 316
out_dir <- in_dir #PARAM4
317 317
create_out_dir_param <- TRUE #PARAM 5
318 318

  
......
334 334
tile_size <- "1500x4500" #PARAM 11
335 335
mulitple_region <- TRUE #PARAM 12
336 336

  
337
region_name <- "reg1" #PARAM 13 #reg1 is North America
337
region_name <- "reg5" #PARAM 13 #reg1 is North America, Africa Region 5
338 338
plot_region <- FALSE
339 339

  
340 340
########################## START SCRIPT ##############################
......
353 353

  
354 354
setwd(out_dir)
355 355

  
356

  
357 356
lf_mosaic <-list.files(path=file.path(in_dir),    
358 357
           pattern=paste(".*.",day_to_mosaic[2],".*.tif$",sep=""),full.names=T) #choosing date 2...20100901
359

  
358
lf_mosaic <- lf_mosaic[1:20]
360 359
r1 <- raster(lf_mosaic[1]) 
361 360
r2 <- raster(lf_mosaic[2]) 
362 361

  
......
450 449
## Create raster image for original predicted images with matching resolution and extent to the mosaic (reference image)
451 450

  
452 451
rast_ref <- file.path(out_dir,"avg.tif") #this is a the ref
453

  
452
r_ref <- raster(rast_ref)
453
plot(r_ref)
454 454

  
455 455
### First match weights from linear option
456 456
lf_files <- unlist(list_linear_r_weights)
......
470 470
num_cores <-11
471 471
list_linear_weights_prod_m <- mclapply(1:length(lf_files),FUN=raster_match,list_param=list_param_raster_match,mc.preschedule=FALSE,mc.cores = num_cores)                           
472 472

  
473

  
474 473
### Second match wegihts from sine option
475 474

  
476 475
lf_files <- unlist(list_sine_r_weights)
......
569 568
r_diff_mean_linear <- r_m_mean - r_m_linear_weighted_mean 
570 569
r_diff_mean_sine <- r_m_mean - r_m_sine_weighted_mean 
571 570

  
571
r_m_mean_terrain <- terrain(r_m_mean,opt=c("slope","aspect"),unit="degrees")
572
r_m_sine_weighted_mean_terrain <- terrain(r_m_sine_weighted_mean,opt=c("slope","aspect"),unit="degrees")
573
r_m_linear_weighted_mean_terrain <- terrain(r_m_linear_weighted_mean,opt=c("slope","aspect"),unit="degrees")
574

  
572 575
#####################
573 576
###### PART 5: Now plot of the weighted mean and unweighted mean with the mosaic function #####
574 577

  
......
638 641

  
639 642
dev.off()
640 643

  
644

  
645
#### plot terrain to emphasize possible edges..
646
res_pix <- 1200
647
col_mfrow <- 1 
648
row_mfrow <- 0.8
649

  
650
png(filename=paste("Figure2_slope_mean_linear_for_region_",region_name,"_",out_suffix,".png",sep=""),
651
    width=col_mfrow*res_pix,height=row_mfrow*res_pix)
652

  
653
plot(r_m_linear_weighted_mean_terrain,y=1)
654

  
655
dev.off()
656

  
657
png(filename=paste("Figure2_aspect_mean_linear_for_region_",region_name,"_",out_suffix,".png",sep=""),
658
    width=col_mfrow*res_pix,height=row_mfrow*res_pix)
659

  
660
plot(r_m_linear_weighted_mean_terrain,y=2)
661

  
662
dev.off()
663

  
664
png(filename=paste("Figure2_slope_mean_sine_for_region_",region_name,"_",out_suffix,".png",sep=""),
665
    width=col_mfrow*res_pix,height=row_mfrow*res_pix)
666

  
667
plot(r_m_sine_weighted_mean_terrain,y=1)
668

  
669
dev.off()
670

  
671
png(filename=paste("Figure2_aspect_mean_sine_for_region_",region_name,"_",out_suffix,".png",sep=""),
672
    width=col_mfrow*res_pix,height=row_mfrow*res_pix)
673

  
674
plot(r_m_sine_weighted_mean_terrain,y=2)
675

  
676
dev.off()
677

  
678
png(filename=paste("Figure2_slope_mean_for_region_",region_name,"_",out_suffix,".png",sep=""),
679
    width=col_mfrow*res_pix,height=row_mfrow*res_pix)
680

  
681
plot(r_m_mean_terrain,y=1)
682

  
683
dev.off()
684

  
685
png(filename=paste("Figure2_aspect_mean_for_region_",region_name,"_",out_suffix,".png",sep=""),
686
    width=col_mfrow*res_pix,height=row_mfrow*res_pix)
687

  
688
plot(r_m_mean_terrain,y=2)
689

  
690
dev.off()
691

  
641 692
##################### END OF SCRIPT ######################
642 693

  
643 694
#################################################

Also available in: Unified diff