Revision cbd65694
Added by Benoit Parmentier over 11 years ago
climate/research/oregon/interpolation/GAM_fusion_analysis_raster_prediction_multisampling.R | ||
---|---|---|
195 | 195 |
clim_yearlist<-list_tmp |
196 | 196 |
} |
197 | 197 |
|
198 |
#to be added gwr_CAI and kriging_CAI |
|
199 |
if (interpolation_method=="gam_CAI"){ |
|
198 |
if (interpolation_method %in% c("gam_CAI","kriging_CAI", "gwr_CAI")){ |
|
200 | 199 |
list_param_runClim_KGCAI<-list(j,s_raster,covar_names,lst_avg,list_models,dst,var,y_var_name, out_prefix,out_path) |
201 | 200 |
names(list_param_runClim_KGCAI)<-c("list_index","covar_rast","covar_names","lst_avg","list_models","dst","var","y_var_name","out_prefix","out_path") |
202 | 201 |
clim_method_mod_obj<-mclapply(1:12, list_param=list_param_runClim_KGCAI, runClim_KGCAI,mc.preschedule=FALSE,mc.cores = 6) #This is the end bracket from mclapply(...) statement |
... | ... | |
229 | 228 |
|
230 | 229 |
#TODO : Same call for all functions!!! Replace by one "if" for all multi time scale methods... |
231 | 230 |
#The methods could be defined earlier as constant?? |
232 |
if (interpolation_method %in% c("gam_CAI","gam_fusion","kriging_fusion","gwr_fusion")){ |
|
231 |
if (interpolation_method %in% c("gam_CAI","kriging_CAI","gwr_CAI","gam_fusion","kriging_fusion","gwr_fusion")){
|
|
233 | 232 |
#input a list:note that ghcn.subsets is not sampling_obj$data_day_ghcn |
234 | 233 |
i<-1 |
235 | 234 |
list_param_run_prediction_daily_deviation <-list(i,clim_yearlist,sampling_obj,dst,var,y_var_name, interpolation_method,out_prefix,out_path) |
... | ... | |
337 | 336 |
################### PREPARE RETURN OBJECT ############### |
338 | 337 |
#Will add more information to be returned |
339 | 338 |
|
340 |
if (interpolation_method %in% c("gam_CAI","gam_fusion","kriging_fusion","gwr_fusion")){ |
|
339 |
if (interpolation_method %in% c("gam_CAI","kriging_CAI","gwr_CAI","gam_fusion","kriging_fusion","gwr_fusion")){
|
|
341 | 340 |
raster_prediction_obj<-list(clim_method_mod_obj,method_mod_obj,validation_mod_obj,tb_diagnostic_v, |
342 | 341 |
summary_metrics_v,summary_month_metrics_v) |
343 | 342 |
names(raster_prediction_obj)<-c("clim_method_mod_obj","method_mod_obj","validation_mod_obj","tb_diagnostic_v", |
climate/research/oregon/interpolation/GAM_fusion_function_multisampling.R | ||
---|---|---|
8 | 8 |
# 5)runGAMFusion <- function(i,list_param) : daily step for fusion method, perform daily prediction |
9 | 9 |
# |
10 | 10 |
#AUTHOR: Benoit Parmentier |
11 |
#DATE: 07/29/2013
|
|
11 |
#DATE: 07/30/2013
|
|
12 | 12 |
#PROJECT: NCEAS INPLANT: Environment and Organisms --TASK#363-- |
13 | 13 |
|
14 | 14 |
##Comments and TODO: |
... | ... | |
97 | 97 |
out_path<-list_param$out_path |
98 | 98 |
|
99 | 99 |
#Model and response variable can be changed without affecting the script |
100 |
prop_month<-0 #proportion retained for validation |
|
101 |
run_samp<-1 |
|
100 |
prop_month<-0 #proportion retained for validation...
|
|
101 |
run_samp<-1 #sample number, can be introduced later...
|
|
102 | 102 |
|
103 | 103 |
#### STEP 2: PREPARE DATA |
104 | 104 |
|
... | ... | |
106 | 106 |
LST_name<-lst_avg[j] # name of LST month to be matched |
107 | 107 |
data_month$LST<-data_month[[LST_name]] |
108 | 108 |
|
109 |
#TMax to model... |
|
109 |
#TMax to model..., add precip later
|
|
110 | 110 |
if (var=="TMAX"){ |
111 | 111 |
data_month$y_var<-data_month$TMax #Adding TMax as the variable modeled |
112 | 112 |
} |
... | ... | |
120 | 120 |
|
121 | 121 |
#mod_list<-fit_models(list_formulas,data_month) #only gam at this stage |
122 | 122 |
#cname<-paste("mod",1:length(mod_list),sep="") #change to more meaningful name? |
123 |
names(mod_list)<-cname |
|
123 |
|
|
124 | 124 |
#Adding layer LST to the raster stack |
125 | 125 |
|
126 | 126 |
pos<-match("LST",names(s_raster)) #Find the position of the layer with name "LST", if not present pos=NA |
... | ... | |
130 | 130 |
s_raster<-addLayer(s_raster,LST) #Adding current month |
131 | 131 |
|
132 | 132 |
#Now generate file names for the predictions... |
133 |
list_out_filename<-vector("list",length(mod_list))
|
|
133 |
list_out_filename<-vector("list",length(list_formulas))
|
|
134 | 134 |
names(list_out_filename)<-cname |
135 | 135 |
|
136 | 136 |
for (k in 1:length(list_out_filename)){ |
Also available in: Unified diff
adding gwr_CAI and kriging_CAI, modifications to raster prediction function