Project

General

Profile

« Previous | Next » 

Revision ced27a42

Added by Benoit Parmentier over 8 years ago

extracting temporal profiles for centroids of tiles in raster stack

View differences:

climate/research/oregon/interpolation/NASA2016_conference_temperature_predictions.R
198 198
#python_bin <- "/nobackupp6/aguzman4/climateLayers/sharedModules2/bin" #PARAM 30
199 199
python_bin <- "/usr/bin" #PARAM 30
200 200

  
201
day_start <- "19990101" #PARAM 12 arg 12
202
day_end <- "19990103" #PARAM 13 arg 13
201
day_start <- "19840101" #PARAM 12 arg 12
202
day_end <- "20021231" #PARAM 13 arg 13
203 203

  
204 204
#infile_mask <- "/nobackupp8/bparmen1/NEX_data/regions_input_files/r_mask_LST_reg4.tif"
205 205
infile_mask <- "/data/project/layers/commons/NEX_data/regions_input_files/r_mask_LST_reg4.tif"
......
220 220
#l_dates <- c("19990101","19990102","19990103","19990701","19990702","19990703")
221 221
l_dates <- c("19920101","19920102","19920103","19920701","19920702","19990703")
222 222

  
223
df_points_extracted_fname <- "/data/project/layers/commons/NEX_data/climateLayers/out/reg4/mosaic/int_mosaics/data_points_extracted.txt"
224

  
223 225
##################### START SCRIPT #################
224 226

  
225 227
####### PART 1: Read in data ########
......
270 272
#paste(raster_name[1:7],collapse="_")
271 273
#add filename option later
272 274

  
273
for (i in 1:length(nlayers(r_mosaic_scaled))){
275
NA_flag_val_mosaic <- -3399999901438340239948148078125514752.000
276

  
277
list_param_plot_raster_mosaic <- list(l_dates,r_mosaic_scaled,NA_flag_val_mosaic,out_dir,out_suffix,
278
                                      region_name,variable_name)
279
names(list_param_plot_raster_mosaic) <- c("l_dates","r_mosaic_scaled","NA_flag_val_mosaic","out_dir","out_suffix",
280
                                          "region_name","variable_name")
281

  
282
lf_mosaic_plot_fig <- mclapply(1:length(lf_mosaic_scaled),FUN=plot_raster_mosaic,list_param=list_param_plot_raster_mosaic,mc.preschedule=FALSE,mc.cores = num_cores)                         
283

  
284
plot_raster_mosaic <- function(i,list_param){
285
  #Function to plot mosaic for poster
286
  #
287
  l_dates <- list_param$l_dates
288
  r_mosaiced_scaled <- list_param$r_mosaiced_scaled
289
  NA_flag_val <- list_param$NA_flag_val
290
  out_dir <- list_param$out_dir
291
  out_suffix <- list_param$out_suffix
292
  region_name <- list_param$region_name
293
  variable_name <- list_param$variable_name
294

  
295
#for (i in 1:length(nlayers(r_mosaic_scaled))){
274 296
  
275 297
  date_proc <- l_dates[i]
276 298
  r_pred <- subset(r_mosaic_scaled,i)
277
  NAvalue(r_pred)<- -3399999901438340239948148078125514752.000
299
  NAvalue(r_pred)<- NA_flag_val 
278 300
 
279 301
  date_proc <- l_dates[i]
280 302
  date_val <- as.Date(strptime(date_proc,"%Y%m%d"))
......
283 305
  year_str <- format(date_val, "%Y") ## Year with century
284 306
  day_str <- as.numeric(format(date_val, "%d")) ## numeric month
285 307
  date_str <- paste(month_str," ",day_str,", ",year_str,sep="")
286
 
308
  
287 309
  res_pix <- 1200
288 310
  #res_pix <- 480
289 311
  col_mfrow <- 1
......
300 322
       #legend.args=list(text='dNBR', side=4, line=2.49, cex=1.6))
301 323
  dev.off()
302 324

  
325
  return(png_filename)
303 326
}
304 327

  
305

  
328
############### PART2: temporal profile #############
306 329
#### Extract time series
307

  
330
###
308 331
#-65,-22
309 332

  
333
df_points <- read.table(df_points_extracted_fname,sep=",") 
310 334
df_centroids <- read.table(df_centroids_fname,sep=",")
335

  
311 336
coordinates(df_centroids)<- c("long","lat")
312 337
proj4string(df_centroids) <- CRS_locs_WGS84
313 338

  
314
extract(df_centroids,)
339
lf_mosaic_list <- list.files(path=in_dir_mosaic,pattern="*.tif")
340
#r_mosaic_ts <- stack(lf_mosaic_list)
341
#df_centroids <- extract(df_centroids,r_mosaic_ts)
342

  
343
df_points$files <- lf_mosaic_list
344

  
345
extract_date <- function(i,x){
346
  y <- unlist(strsplit(x[[i]],"_"))
347
  date_str <- y[length(y)-2]
348
}
349
#debug(extract_date)
350
#test <- (extract_date(1,lf_mosaic_list))
351

  
352
list_dates_produced <- unlist(mclapply(1:length(lf_mosaic_list),FUN=extract_date,mc.preschedule=FALSE,mc.cores = num_cores))                         
353
#list_dates_produced <- mclapply(1:11,FUN=extract_date,mc.preschedule=FALSE,x=lf_mosaic_list,mc.cores = num_cores)                         
354

  
355

  
356
list_dates_produced_date_val <- as.Date(strptime(list_dates_produced,"%Y%m%d"))
357
month_str <- format(list_dates_produced_date_val, "%b") ## Month, char, abbreviated
358
year_str <- format(list_dates_produced_date_val, "%Y") ## Year with century
359
day_str <- as.numeric(format(list_dates_produced_date_val, "%d")) ## numeric month
360

  
361
df_points$date <- list_dates_produced_date_val
362
df_points$month <- month_str
363
df_points$year <- year_str
364
df_points$day <- day_str
365

  
366
#data_pixel <- data_df[id_selected,]
367
#data_pixel$rainfall <- as.numeric(data_pixel$rainfall)
368
#d_z_tmp <-zoo(data_pixel$rainfall,as.Date(data_pixel$date))
369
#names(d_z_tmp)<- "rainfall"
370
#data_pixel <- as.data.frame(data_pixel)
371
#d_z_tmp2 <- zoo(data_pixel[[var_name]],as.Date(data_pixel$date))
372
    
373
#start_date <-input$dates[1]
374
#end_date <-input$dates[2]
375
    
376
#d_z <- window(d_z_tmp,start=start_date,end=end_date)
377
#d_z2 <- window(d_z_tmp2,start=start_date,end=end_date)
378
#df2 <- as.data.frame(d_z2)
379
#names(df2)<- var_name
315 380

  
316
raster()
317 381

  
318 382
############################ END OF SCRIPT ##################################

Also available in: Unified diff