Project

General

Profile

Download (20.7 KB) Statistics
| Branch: | Revision:
1
## Figures associated with MOD35 Cloud Mask Exploration
2

    
3
setwd("~/acrobates/adamw/projects/MOD35C5")
4

    
5
library(raster);beginCluster(10)
6
library(rasterVis)
7
library(rgdal)
8
library(plotKML)
9
library(Cairo)
10
library(reshape)
11
library(rgeos)
12
library(splancs)
13

    
14
## get % cloudy
15
mod09=raster("data/MOD09_2009.tif")
16
names(mod09)="MOD09CF"
17
NAvalue(mod09)=0
18

    
19
mod35c5=raster("data/MOD35_2009.tif")
20
names(mod35c5)="C5MOD35CF"
21
NAvalue(mod35c5)=0
22

    
23
## mod35C6 annual
24
if(!file.exists("data/MOD35C6_2009.tif")){
25
  system("/usr/local/gdal-1.10.0/bin/gdalbuildvrt  -a_srs '+proj=sinu +lon_0=0 +x_0=0 +y_0=0 +a=6371007.181 +b=6371007.181 +units=m +no_defs' -sd 1 -b 1 data/MOD35C6.vrt `find /home/adamw/acrobates/adamw/projects/interp/data/modis/mod35/summary/ -name '*h[1]*_mean.nc'` ")
26
  system("align.sh data/MOD35C6.vrt data/MOD09_2009.tif data/MOD35C6_2009.tif")
27
}
28
mod35c6=raster("data/MOD35C6_2009.tif")
29
names(mod35c6)="C6MOD35CF"
30
NAvalue(mod35c6)=255
31

    
32
## landcover
33
if(!file.exists("data/MCD12Q1_IGBP_2009_051_wgs84_1km.tif")){
34
  system(paste("/usr/local/gdal-1.10.0/bin/gdalwarp -tr 0.008983153 0.008983153 -r mode -ot Byte -co \"COMPRESS=LZW\"",
35
               " /mnt/data/jetzlab/Data/environ/global/MODIS/MCD12Q1/051/MCD12Q1_051_2009.tif ",
36
               " -t_srs \"+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs\" ",
37
               " -te -180.0044166 -60.0074610 180.0044166 90.0022083 ",
38
               "data/MCD12Q1_IGBP_2009_051_wgs84_1km.tif -overwrite ",sep=""))}
39
lulc=raster("data/MCD12Q1_IGBP_2009_051_wgs84_1km.tif")
40

    
41
#  lulc=ratify(lulc)
42
  data(worldgrids_pal)  #load palette
43
  IGBP=data.frame(ID=0:16,col=worldgrids_pal$IGBP[-c(18,19)],
44
    lulc_levels2=c("Water","Forest","Forest","Forest","Forest","Forest","Shrublands","Shrublands","Savannas","Savannas","Grasslands","Permanent wetlands","Croplands","Urban and built-up","Cropland/Natural vegetation mosaic","Snow and ice","Barren or sparsely vegetated"),stringsAsFactors=F)
45
  IGBP$class=rownames(IGBP);rownames(IGBP)=1:nrow(IGBP)
46
  levels(lulc)=list(IGBP)
47
#lulc=crop(lulc,mod09)
48
names(lulc)="MCD12Q1"
49

    
50
## make land mask
51
if(!file.exists("data/land.tif"))
52
  land=calc(lulc,function(x) ifelse(x==0,NA,1),file="data/land.tif",options=c("COMPRESS=LZW","ZLEVEL=9","PREDICTOR=2"),datatype="INT1U",overwrite=T)
53
land=raster("data/land.tif")
54

    
55
## mask cloud masks to land pixels
56
#mod09l=mask(mod09,land)
57
#mod35l=mask(mod35,land)
58

    
59
#####################################
60
### compare MOD43 and MOD17 products
61

    
62
## MOD17
63
#extent(mod17)=alignExtent(mod17,mod09)
64
if(!file.exists("data/MOD17.tif"))
65
system("align.sh ~/acrobates/adamw/projects/interp/data/modis/MOD17/MOD17A3_Science_NPP_mean_00_12.tif data/MOD09_2009.tif data/MOD17.tif")
66
mod17=raster("data/MOD17.tif",format="GTiff")
67
NAvalue(mod17)=65535
68
names(mod17)="MOD17"
69

    
70
if(!file.exists("data/MOD17qc.tif"))
71
  system("align.sh ~/acrobates/adamw/projects/interp/data/modis/MOD17/MOD17A3_Science_NPP_Qc_mean_00_12.tif data/MOD09_2009.tif data/MOD17qc.tif")
72
mod17qc=raster("data/MOD17qc.tif",format="GTiff")
73
NAvalue(mod17qc)=255
74
names(mod17qc)="MOD17CF"
75

    
76
## MOD11 via earth engine
77
if(!file.exists("data/MOD11_2009.tif"))
78
  system("align.sh ~/acrobates/adamw/projects/interp/data/modis/mod11/2009/MOD11_LST_2009.tif data/MOD09_2009.tif data/MOD11_2009.tif")
79
mod11=raster("data/MOD11_2009.tif",format="GTiff")
80
names(mod11)="MOD11"
81
NAvalue(mod11)=0
82
if(!file.exists("data/MOD11qc_2009.tif"))
83
  system("align.sh ~/acrobates/adamw/projects/interp/data/modis/mod11/2009/MOD11_Pmiss_2009.tif data/MOD09_2009.tif data/MOD11qc_2009.tif")
84
mod11qc=raster("data/MOD11qc_2009.tif",format="GTiff")
85
names(mod11qc)="MOD11CF"
86

    
87

    
88
### Create some summary objects for plotting
89
#difm=v6m-v5m
90
#v5v6compare=stack(v5m,v6m,difm)
91
#names(v5v6compare)=c("Collection 5","Collection 6","Difference (C6-C5)")
92

    
93
### Processing path
94
if(!file.exists("data/MOD35pp.tif"))
95
system("align.sh data/MOD35_ProcessPath.tif data/MOD09_2009.tif data/MOD35pp.tif")
96
pp=raster("data/MOD35pp.tif")
97
NAvalue(pp)=255
98
names(pp)="MOD35pp"
99

    
100

    
101
#hist(dif,maxsamp=1000000)
102
## draw lulc-stratified random sample of mod35-mod09 differences 
103
#samp=sampleStratified(lulc, 1000, exp=10)
104
#save(samp,file="LULC_StratifiedSample_10000.Rdata")
105
#mean(dif[samp],na.rm=T)
106
#Stats(dif,function(x) c(mean=mean(x),sd=sd(x)))
107

    
108

    
109
###
110

    
111
n=100
112
at=seq(0,100,len=n)
113
cols=grey(seq(0,1,len=n))
114
cols=rainbow(n)
115
bgyr=colorRampPalette(c("blue","green","yellow","red"))
116
cols=bgyr(n)
117

    
118
#levelplot(lulcf,margin=F,layers="LULC")
119

    
120

    
121
### Transects
122
r1=Lines(list(
123
  Line(matrix(c(
124
                -61.688,4.098,
125
                -59.251,3.430
126
                ),ncol=2,byrow=T))),"Venezuela")
127
r2=Lines(list(
128
  Line(matrix(c(
129
                133.746,-31.834,
130
                134.226,-32.143
131
                ),ncol=2,byrow=T))),"Australia")
132
r3=Lines(list(
133
  Line(matrix(c(
134
                73.943,27.419,
135
                74.369,26.877
136
                ),ncol=2,byrow=T))),"India")
137
r4=Lines(list(
138
  Line(matrix(c(
139
                -5.164,42.270,
140
                -4.948,42.162
141
                ),ncol=2,byrow=T))),"Spain")
142

    
143
r5=Lines(list(
144
  Line(matrix(c(
145
                33.195,12.512,
146
                33.802,12.894
147
                ),ncol=2,byrow=T))),"Sudan")
148

    
149
r6=Lines(list(
150
  Line(matrix(c(
151
                -63.353,-10.746,
152
                -63.376,-9.310
153
                ),ncol=2,byrow=T))),"Brazil")
154

    
155

    
156
trans=SpatialLines(list(r1,r2,r3,r5),CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs "))
157
### write out shapefiles of transects
158
writeOGR(SpatialLinesDataFrame(trans,data=data.frame(ID=names(trans)),match.ID=F),"output",layer="transects",driver="ESRI Shapefile",overwrite=T)
159

    
160
## buffer transects to get regional values 
161
transb=gBuffer(trans,byid=T,width=0.4)
162

    
163
## make polygons of bounding boxes
164
bb0 <- lapply(slot(transb, "polygons"), bbox)
165
bb1 <- lapply(bb0, bboxx)
166
# turn these into matrices using a helper function in splancs
167
bb2 <- lapply(bb1, function(x) rbind(x, x[1,]))
168
# close the matrix rings by appending the first coordinate
169
rn <- row.names(transb)
170
# get the IDs
171
bb3 <- vector(mode="list", length=length(bb2))
172
# make somewhere to keep the output
173
for (i in seq(along=bb3)) bb3[[i]] <- Polygons(list(Polygon(bb2[[i]])),
174
                   ID=rn[i])
175
# loop over the closed matrix rings, adding the IDs
176
bbs <- SpatialPolygons(bb3, proj4string=CRS(proj4string(transb)))
177

    
178
trd1=lapply(1:length(transb),function(x) {
179
  td=crop(mod11,transb[x])
180
  tdd=lapply(list(mod35c5,mod35c6,mod09,mod17,mod17qc,mod11,mod11qc,lulc,pp),function(l) resample(crop(l,transb[x]),td,method="ngb"))
181
  ## normalize MOD11 and MOD17
182
  for(j in which(do.call(c,lapply(tdd,function(i) names(i)))%in%c("MOD11","MOD17"))){
183
    trange=cellStats(tdd[[j]],range)
184
    tscaled=100*(tdd[[j]]-trange[1])/(trange[2]-trange[1])
185
    tscaled@history=list(range=trange)
186
    names(tscaled)=paste(names(tdd[[j]]),"scaled",collapse="_",sep="_")
187
    tdd=c(tdd,tscaled)
188
  }
189
  return(brick(tdd))
190
})
191

    
192
## bind all subregions into single dataframe for plotting
193
trd=do.call(rbind.data.frame,lapply(1:length(trd1),function(i){
194
  d=as.data.frame(as.matrix(trd1[[i]]))
195
  d[,c("x","y")]=coordinates(trd1[[i]])
196
  d$trans=names(trans)[i]
197
  d=melt(d,id.vars=c("trans","x","y"))
198
  return(d)
199
}))
200

    
201
transd=do.call(rbind.data.frame,lapply(1:length(trans),function(l) {
202
  td=as.data.frame(extract(trd1[[l]],trans[l],along=T,cellnumbers=F)[[1]])
203
  td$loc=extract(trd1[[l]],trans[l],along=T,cellnumbers=T)[[1]][,1]
204
  td[,c("x","y")]=xyFromCell(trd1[[l]],td$loc)
205
  td$dist=spDistsN1(as.matrix(td[,c("x","y")]), as.matrix(td[1,c("x","y")]),longlat=T)
206
  td$transect=names(trans[l])
207
  td2=melt(td,id.vars=c("loc","x","y","dist","transect"))
208
  td2=td2[order(td2$variable,td2$dist),]
209
  # get per variable ranges to normalize
210
  tr=cast(melt.list(tapply(td2$value,td2$variable,function(x) data.frame(min=min(x,na.rm=T),max=max(x,na.rm=T)))),L1~variable)
211
  td2$min=tr$min[match(td2$variable,tr$L1)]
212
  td2$max=tr$max[match(td2$variable,tr$L1)]
213
  print(paste("Finished ",names(trans[l])))
214
  return(td2)}
215
  ))
216

    
217
transd$type=ifelse(grepl("MOD35|MOD09|CF",transd$variable),"CF","Data")
218

    
219

    
220
## comparison of % cloudy days
221
dif_c5_09=mod35c5-mod09
222
#dif_c6_09=mod35c6-mod09
223
#dif_c5_c6=mod35c5-mod35c6
224

    
225
## exploring various ways to compare cloud products
226
t1=trd1[[1]]
227
dif_p=calc(trd1[[1]], function(x) (x[1]-x[3])/(1-x[1]))
228
edge=calc(edge(subset(t1,"MCD12Q1"),classes=T,type="inner"),function(x) ifelse(x==1,1,NA))
229
edgeb=buffer(edge,width=5000)
230
edgeb=calc(edgeb,function(x) ifelse(is.na(x),0,1))
231

    
232
names(edge)="edge"
233
names(edgeb)="edgeb"
234

    
235
td1=as.data.frame(stack(t1,edge,edgeb))
236

    
237
cor(td1$MOD17,td1$C5MOD35,use="complete",method="spearman")
238
cor(td1$MOD17[td1$edgeb==1],td1$C5MOD35[td1$edgeb==1],use="complete",method="spearman")
239
round(cor(td1,use="complete",method="spearman"),2)
240
## tests
241
cor.test(td1$MOD17,td1$C5MOD35,use="complete",method="spearman",alternative="two.sided")
242
cor.test(td1$MOD17,td1$C6MOD35,use="complete",method="spearman",alternative="two.sided")
243
cor.test(td1$MOD17,td1$C5MOD35,use="complete",method="spearman",alternative="two.sided")
244

    
245
cor.test(
246
splom(t1)
247
plot(mod17,mod17qc)
248
xyplot(MOD17~C5MOD35CF|edgeb,data=td1)
249
bwplot(MCD12Q1~C5MOD35CF|edgeb,data=td1)
250

    
251
plot(dif_p)
252

    
253
#rondonia=trd[trd$trans=="Brazil",]
254
#trd=trd[trd$trans!="Brazil",]
255

    
256
at=seq(0,100,leng=100)
257
bgyr=colorRampPalette(c("purple","blue","green","yellow","orange","red","red"))
258
bgrayr=colorRampPalette(c("purple","blue","grey","red","red"))
259
cols=bgyr(100)
260

    
261
## global map
262
library(maptools)
263
coast=map2SpatialLines(map("world", interior=FALSE, plot=FALSE),proj4string=CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs"))
264

    
265
g1=levelplot(stack(mod35c5,mod09),xlab=" ",scales=list(x=list(draw=F),y=list(alternating=1)),col.regions=cols,at=at)+layer(sp.polygons(bbs[1:4],lwd=2))+layer(sp.lines(coast,lwd=.5))
266

    
267
g2=levelplot(dif_c5_09,col.regions=bgrayr(100),at=seq(-70,70,len=100),margin=F,ylab=" ",colorkey=list("right"))+layer(sp.polygons(bbs[1:4],lwd=2))+layer(sp.lines(coast,lwd=.5))
268
g2$strip=strip.custom(var.name="Difference (C5MOD35-MOD09)",style=1,strip.names=T,strip.levels=F)  #update strip text
269
bg <- trellis.par.get("panel.background")
270
bg$col <- "white"
271
trellis.par.set("panel.background",bg)
272
g3=histogram(dif_c5_09,col="black",border=NA,scales=list(x=list(at=c(-50,0,50)),y=list(draw=F),cex=1))+layer(panel.abline(v=0,col="red",lwd=2))
273

    
274
### regional plots
275
p1=useOuterStrips(levelplot(value~x*y|variable+trans,data=trd[!trd$variable%in%c("MCD12Q1","MOD35pp"),],asp=1,scales=list(draw=F,rot=0,relation="free"),
276
                                       at=at,col.regions=cols,maxpixels=7e6,
277
                                       ylab="Latitude",xlab="Longitude"),strip = strip.custom(par.strip.text=list(cex=.75)))+layer(sp.lines(trans,lwd=2))
278

    
279
p2=useOuterStrips(
280
  levelplot(value~x*y|variable+trans,data=trd[trd$variable%in%c("MCD12Q1"),],
281
            asp=1,scales=list(draw=F,rot=0,relation="free"),colorkey=F,
282
            at=c(-1,IGBP$ID),col.regions=IGBP$col,maxpixels=7e7,
283
            legend=list(
284
              right=list(fun=draw.key(list(columns=1,#title="MCD12Q1 \n IGBP Land \n Cover",
285
                           rectangles=list(col=IGBP$col,size=1),
286
                           text=list(as.character(IGBP$ID),at=IGBP$ID-.5))))),
287
            ylab="",xlab=" "),strip = strip.custom(par.strip.text=list(cex=.75)),strip.left=F)+layer(sp.lines(trans,lwd=2))
288
p3=useOuterStrips(
289
  levelplot(value~x*y|variable+trans,data=trd[trd$variable%in%c("MOD35pp"),],
290
            asp=1,scales=list(draw=F,rot=0,relation="free"),colorkey=F,
291
            at=c(-1:4),col.regions=c("blue","cyan","tan","darkgreen"),maxpixels=7e7,
292
            legend=list(
293
              right=list(fun=draw.key(list(columns=1,#title="MOD35 \n Processing \n Path",
294
                           rectangles=list(col=c("blue","cyan","tan","darkgreen"),size=1),
295
                           text=list(c("Water","Coast","Desert","Land")))))),
296
            ylab="",xlab=" "),strip = strip.custom(par.strip.text=list(cex=.75)),strip.left=F)+layer(sp.lines(trans,lwd=2))
297

    
298
## transects
299
p4=xyplot(value~dist|transect,groups=variable,type=c("smooth","p"),
300
       data=transd,panel=function(...,subscripts=subscripts) {
301
         td=transd[subscripts,]
302
         ## mod09
303
         imod09=td$variable=="MOD09CF"
304
         panel.xyplot(td$dist[imod09],td$value[imod09],type=c("p","smooth"),span=0.2,subscripts=1:sum(imod09),col="red",pch=16,cex=.25)
305
         ## mod35C5
306
         imod35=td$variable=="C5MOD35CF"
307
         panel.xyplot(td$dist[imod35],td$value[imod35],type=c("p","smooth"),span=0.09,subscripts=1:sum(imod35),col="blue",pch=16,cex=.25)
308
         ## mod35C6
309
         imod35c6=td$variable=="C6MOD35CF"
310
         panel.xyplot(td$dist[imod35c6],td$value[imod35c6],type=c("p","smooth"),span=0.09,subscripts=1:sum(imod35c6),col="black",pch=16,cex=.25)
311
         ## mod17
312
         imod17=td$variable=="MOD17"
313
         panel.xyplot(td$dist[imod17],100*((td$value[imod17]-td$min[imod17][1])/(td$max[imod17][1]-td$min[imod17][1])),
314
                      type=c("smooth"),span=0.09,subscripts=1:sum(imod17),col="darkgreen",lty=5,pch=1,cex=.25)
315
         imod17qc=td$variable=="MOD17CF"
316
         panel.xyplot(td$dist[imod17qc],td$value[imod17qc],type=c("p","smooth"),span=0.09,subscripts=1:sum(imod17qc),col="darkgreen",pch=16,cex=.25)
317
         ## mod11
318
         imod11=td$variable=="MOD11"
319
         panel.xyplot(td$dist[imod11],100*((td$value[imod11]-td$min[imod11][1])/(td$max[imod11][1]-td$min[imod11][1])),
320
                      type=c("smooth"),span=0.09,subscripts=1:sum(imod17),col="orange",lty="dashed",pch=1,cex=.25)
321
         imod11qc=td$variable=="MOD11CF"
322
         qcspan=ifelse(td$transect[1]=="Australia",0.2,0.05)
323
         panel.xyplot(td$dist[imod11qc],td$value[imod11qc],type=c("p","smooth"),npoints=100,span=qcspan,subscripts=1:sum(imod11qc),col="orange",pch=16,cex=.25)
324
         ## land
325
         path=td[td$variable=="MOD35pp",]
326
         panel.segments(path$dist,-5,c(path$dist[-1],max(path$dist,na.rm=T)),-5,col=c("blue","cyan","tan","darkgreen")[path$value+1],subscripts=1:nrow(path),lwd=15,type="l")
327
         land=td[td$variable=="MCD12Q1",]
328
         panel.segments(land$dist,-10,c(land$dist[-1],max(land$dist,na.rm=T)),-10,col=IGBP$col[land$value+1],subscripts=1:nrow(land),lwd=15,type="l")
329
        },subscripts=T,par.settings = list(grid.pars = list(lineend = "butt")),
330
       scales=list(
331
         x=list(alternating=1,relation="free"),#, lim=c(0,70)),
332
         y=list(at=c(-10,-5,seq(0,100,len=5)),
333
           labels=c("IGBP","MOD35",seq(0,100,len=5)),
334
           lim=c(-15,100))),
335
       xlab="Distance Along Transect (km)", ylab="% Missing Data / % of Maximum Value",
336
       legend=list(
337
         bottom=list(fun=draw.key(list( rep=FALSE,columns=1,title=" ",
338
                      ##                   text=list(c("MOD09 % Cloudy","C5 MOD35 % Cloudy","C6 MOD35 % Cloudy","MOD17 % Missing","MOD17 (scaled)","MOD11 % Missing","MOD11 (scaled)")),
339
                      lines=list(type=c("b","b","b","b","b","l","b","l"),pch=16,cex=.5,lty=c(0,1,1,1,1,5,1,5),col=c("transparent","red","blue","black","darkgreen","darkgreen","orange","orange")),
340
                       text=list(c("MODIS Products","MOD09 % Cloudy","C5 MOD35 % Cloudy","C6 MOD35 % Cloudy","MOD17 % Missing","MOD17 (scaled)","MOD11 % Missing","MOD11 (scaled)")),
341
                       rectangles=list(border=NA,col=c(NA,"tan","darkgreen")),
342
                       text=list(c("C5 MOD35 Processing Path","Desert","Land")),
343
                      rectangles=list(border=NA,col=c(NA,IGBP$col[sort(unique(transd$value[transd$variable=="MCD12Q1"]+1))])),
344
                      text=list(c("MCD12Q1 IGBP Land Cover",IGBP$class[sort(unique(transd$value[transd$variable=="MCD12Q1"]+1))])))))),
345
 strip = strip.custom(par.strip.text=list(cex=.75)))
346
#print(p4)
347

    
348
#trdw=cast(trd,trans+x+y~variable,value="value")
349
#transdw=cast(transd,transect+dist~variable,value="value")
350
#xyplot(MOD11CF~C5MOD35CF|transect,groups=MCD12Q1,data=transdw,pch=16,cex=1,scales=list(relation="free"))
351
#xyplot(MOD17~C5MOD35CF|trans,groups=MCD12Q1,data=trdw,pch=16,cex=1,scales=list(relation="free"))
352

    
353
#p5=levelplot(value~x*y|variable,data=rondonia,asp=1,scales=list(draw=F,rot=0,relation="free"),colorkey=T)#,
354
#print(p5)
355

    
356

    
357
CairoPDF("output/mod35compare.pdf",width=11,height=7)
358
#CairoPNG("output/mod35compare_%d.png",units="in", width=11,height=8.5,pointsize=4000,dpi=1200,antialias="subpixel")
359
### Global Comparison
360
print(g1)
361
print(g1,position=c(0,.35,1,1),more=T)
362
print(g2,position=c(0,0,1,0.415),more=F)
363
#print(g3,position=c(0.31,0.06,.42,0.27),more=F)
364
         
365
### MOD35 Desert Processing path
366
levelplot(pp,asp=1,scales=list(draw=T,rot=0),maxpixels=1e6,
367
          at=c(-1:3),col.regions=c("blue","cyan","tan","darkgreen"),margin=F,
368
          colorkey=list(space="bottom",title="MOD35 Processing Path",labels=list(labels=c("Water","Coast","Desert","Land"),at=0:4-.5)))+layer(sp.polygons(bbs,lwd=2))+layer(sp.lines(coast,lwd=.5))
369
### levelplot of regions
370
print(p1,position=c(0,0,.62,1),more=T)
371
print(p2,position=c(0.6,0.21,0.78,0.79),more=T)
372
print(p3,position=c(0.76,0.21,1,0.79))
373
### profile plots
374
print(p4)
375
dev.off()
376

    
377
### summary stats for paper
378
td=cast(transect+loc+dist~variable,value="value",data=transd)
379
td2=melt.data.frame(td,id.vars=c("transect","dist","loc","MOD35pp","MCD12Q1"))
380

    
381
## function to prettyprint mean/sd's
382
msd= function(x) paste(round(mean(x,na.rm=T),1),"% ±",round(sd(x,na.rm=T),1),sep="")
383

    
384
cast(td2,transect+variable~MOD35pp,value="value",fun=msd)
385
cast(td2,transect+variable~MOD35pp+MCD12Q1,value="value",fun=msd)
386
cast(td2,transect+variable~.,value="value",fun=msd)
387

    
388
cast(td2,transect+variable~.,value="value",fun=msd)
389

    
390
cast(td2,variable~MOD35pp,value="value",fun=msd)
391
cast(td2,variable~.,value="value",fun=msd)
392

    
393
td[td$transect=="Venezuela",]
394

    
395

    
396

    
397

    
398
## scatterplot of MOD35 vs MOD09
399
trdl=cast(trans+x+y~variable,value="value",data=trd)
400
xyplot(MOD35C5qc~MOD09qc|trans+as.factor(MOD35pp),pch=16,cex=.2,data=trdl,auto.key=T)+layer(panel.abline(0,1))
401

    
402

    
403
### LANDCOVER
404
levelplot(lulc,col.regions=IGBP$col,scales=list(cex=2),colorkey=list(space="right",at=0:17,labels=list(at=seq(0.5,16.5,by=1),labels=levels(lulc)[[1]]$class,cex=2)),margin=F)
405

    
406
levelplot(mcompare,col.regions=cols,at=at,margin=F,sub="Frequency of MOD35 Clouds in March")
407
#levelplot(dif,col.regions=bgyr(20),margin=F)
408
levelplot(mdiff,col.regions=bgyr(100),at=seq(mdiff@data@min,mdiff@data@max,len=100),margin=F)
409

    
410

    
411
boxplot(as.matrix(subset(dif,subset=1))~forest,varwidth=T,notch=T);abline(h=0)
412

    
413

    
414
levelplot(modprod,main="Missing Data (%) in MOD17 (NPP) and MOD43 (BRDF Reflectance)",
415
          sub="Tile H11v08 (Venezuela)",col.regions=cols,at=at)
416

    
417

    
418

    
419

    
420
levelplot(modprod,main="Missing Data (%) in MOD17 (NPP) and MOD43 (BRDF Reflectance)",
421
          sub="Tile H11v08 (Venezuela)",col.regions=cols,at=at,
422
          xlim=c(-7300000,-6670000),ylim=c(0,600000))
423

    
424
levelplot(v5m,main="Missing Data (%) in MOD17 (NPP) and MOD43 (BRDF Reflectance)",
425
          sub="Tile H11v08 (Venezuela)",col.regions=cols,at=at,
426
          xlim=c(-7200000,-6670000),ylim=c(0,400000),margin=F)
427

    
428

    
429
levelplot(subset(v5v6compare,1:2),main="Proportion Cloudy Days (%) in Collection 5 and 6 MOD35",
430
          sub="Tile H11v08 (Venezuela)",col.regions=cols,at=at,
431
          margin=F)
432

    
433
levelplot(subset(v5v6compare,1:2),main="Proportion Cloudy Days (%) in Collection 5 and 6 MOD35",
434
          sub="Tile H11v08 (Venezuela)",col.regions=cols,at=at,
435
          xlim=c(-7200000,-6670000),ylim=c(0,400000),margin=F)
436

    
437
levelplot(subset(v5v6compare,1:2),main="Proportion Cloudy Days (%) in Collection 5 and 6 MOD35",
438
          sub="Tile H11v08 (Venezuela)",col.regions=cols,at=at,
439
          xlim=c(-7500000,-7200000),ylim=c(700000,1000000),margin=F)
440

    
441

    
442
dev.off()
443

    
444
### smoothing plots
445
## explore smoothed version
446
td=subset(v6,m)
447
## build weight matrix
448
s=3
449
w=matrix(1/(s*s),nrow=s,ncol=s)
450
#w[s-1,s-1]=4/12; w
451
td2=focal(td,w=w)
452
td3=stack(td,td2)
453

    
454
levelplot(td3,col.regions=cols,at=at,margin=F)
455

    
456
dev.off()
457
plot(stack(difm,lulc))
458

    
459
### ROI
460
tile_ll=projectExtent(v6, "+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs")
461

    
462
62,59
463
0,3
464

    
465

    
466

    
467
#### export KML timeseries
468
library(plotKML)
469
tile="h11v08"
470
file=paste("summary/MOD35_",tile,".nc",sep="")
471
system(paste("gdalwarp -overwrite -multi -ot INT16 -r cubicspline -srcnodata 255 -dstnodata 255 -s_srs '+proj=sinu +lon_0=0 +x_0=0 +y_0=0 +a=6371007.181 +b=6371007.181 +units=m +no_defs' -t_srs 'EPSG:4326' NETCDF:",file,":PCloud  MOD35_",tile,".tif",sep=""))
472

    
473
v6sp=brick(paste("MOD35_",tile,".tif",sep=""))
474
v6sp=readAll(v6sp)
475

    
476
## wasn't working with line below, perhaps Z should just be text? not date?
477
v6sp=setZ(v6sp,as.Date(paste("2011-",1:12,"-15",sep="")))
478
names(v6sp)=month.name
479

    
480
kml_open("output/mod35.kml")
481

    
482

    
483
kml_layer.RasterBrick(v6sp,
484
     plot.legend = TRUE, dtime = "", tz = "GMT",
485
    z.lim = c(0,100),colour_scale = get("colour_scale_numeric", envir = plotKML.opts))
486
#    home_url = get("home_url", envir = plotKML.opts),
487
#    metadata = NULL, html.table = NULL,
488
#    altitudeMode = "clampToGround", balloon = FALSE,
489
)
490

    
491
logo = "http://static.tumblr.com/t0afs9f/KWTm94tpm/yale_logo.png"
492
kml_screen(image.file = logo, position = "UL", sname = "YALE logo",size=c(.1,.1))
493
kml_close("mod35.kml")
494
kml_compress("mod35.kml",files=c(paste(month.name,".png",sep=""),"obj_legend.png"),zip="/usr/bin/zip")
(20-20/35)