Project

General

Profile

« Previous | Next » 

Revision d31ebea7

Added by Benoit Parmentier over 10 years ago

run6 assessment NEX part2: add new plots of assessment of first global run

View differences:

climate/research/oregon/interpolation/global_run_scalingup_assessment_part2.R
5 5
#Analyses, figures, tables and data are also produced in the script.
6 6
#AUTHOR: Benoit Parmentier 
7 7
#CREATED ON: 03/23/2014  
8
#MODIFIED ON: 08/28/2014            
8
#MODIFIED ON: 09/16/2014            
9 9
#Version: 3
10 10
#PROJECT: Environmental Layers project     
11 11
#COMMENTS: analyses for run 5 global using 6 specific tiles
......
69 69
#on ATLAS
70 70
#in_dir1 <- "/data/project/layers/commons/NEX_data/test_run1_03232014/output" #On Atlas
71 71
#parent output dir : contains subset of the data produced on NEX
72
in_dir1 <- "/data/project/layers/commons/NEX_data/output_run5_global_analyses_08252014/output20Deg"
72
in_dir1 <- "/data/project/layers/commons/NEX_data/output_run6_global_analyses_09162014/output20Deg2"
73 73
# parent output dir for the curent script analyes
74 74
#out_dir <-"/data/project/layers/commons/NEX_data/output_run3_global_analyses_06192014/" #On NCEAS Atlas
75
out_dir <-"/data/project/layers/commons/NEX_data/output_run5_global_analyses_08252014/"
75
out_dir <-"/data/project/layers/commons/NEX_data/output_run6_global_analyses_09162014/"
76 76
# input dir containing shapefiles defining tiles
77 77
#in_dir_shp <- "/data/project/layers/commons/NEX_data/output_run5_global_analyses_08252014/output/subset/shapefiles"
78 78

  
......
83 83
#out_dir <- "/nobackup/bparmen1/" #on NEX
84 84
#in_dir_shp <- "/nobackupp4/aguzman4/climateLayers/output4/subset/shapefiles/"
85 85

  
86
y_var_nay_var_name <- "dailyTmax"
86
y_var_name <- "dailyTmax"
87 87
interpolation_method <- c("gam_CAI")
88
out_prefix<-"run5_global_analyses_08252014"
88
out_prefix<-"run6_global_analyses_09162014"
89 89

  
90 90

  
91 91
#out_dir <-paste(out_dir,"_",out_prefix,sep="")
......
113 113
tb_s <- read.table(file=file.path(out_dir,paste("tb_diagnostic_s_NA","_",out_prefix,".txt",sep="")),sep=",")
114 114

  
115 115
tb_month_s_<- read.table(file=file.path(out_dir,paste("tb_month_diagnostic_s_NA","_",out_prefix,".txt",sep="")),sep=",")
116
tb_month_s <- read.table("tb_month_diagnostic_s_NA_run5_global_analyses_08252014.txt",sep=",")
116
#tb_month_s <- read.table("tb_month_diagnostic_s_NA_run5_global_analyses_08252014.txt",sep=",")
117 117
pred_data_month_info <- read.table(file=file.path(out_dir,paste("pred_data_month_info_",out_prefix,".txt",sep="")),sep=",")
118 118
pred_data_day_info <- read.table(file=file.path(out_dir,paste("pred_data_day_info_",out_prefix,".txt",sep="")),sep=",")
119 119
df_tile_processed <- read.table(file=file.path(out_dir,paste("df_tile_processed_",out_prefix,".txt",sep="")),sep=",")
120 120
#in_dir_list <- file.path(in_dir1,read.table(file.path(in_dir1,"processed.txt"))$V1)
121
gam_diagnostic_df <- read.table(file=file.path(out_dir,"gam_diagnostic_df_run4_global_analyses_08142014.txt"),sep=",")
121
#gam_diagnostic_df <- read.table(file=file.path(out_dir,"gam_diagnostic_df_run4_global_analyses_08142014.txt"),sep=",")
122 122

  
123 123
########################## START SCRIPT ##############################
124 124

  
......
128 128
#df_tiled_processed <- na.omit(df_tile_processed) #remove other list of folders irrelevant
129 129
#list_shp_reg_files <- df_tiled_processed$shp_files
130 130
list_shp_reg_files<- as.character(df_tile_processed$shp_files)
131
list_shp_reg_files <- file.path("/data/project/layers/commons/NEX_data/output_run4_global_analyses_08142014/output20Deg",
132
          as.character(df_tile_processed$tile_coord),"shapefiles",basename(list_shp_reg_files))
131
#list_shp_reg_files <- file.path("/data/project/layers/commons/NEX_data/",out_dir,
132
#          as.character(df_tile_processed$tile_coord),"shapefiles",basename(list_shp_reg_files))
133
list_shp_reg_files <- file.path("/data/project/layers/commons/NEX_data/",out_dir,
134
          "shapefiles",basename(list_shp_reg_files))
133 135

  
134 136
### First get background map to display where study area is located
135 137
#can make this more general later on..       
......
154 156
shps_tiles <- vector("list",length(list_shp_reg_files))
155 157
#collect info: read in all shapfiles
156 158
#This is slow...make a function and use mclapply??
157

  
159
/data/project/layers/commons/NEX_data/output_run6_global_analyses_09162014/shapefiles
158 160
for(i in 1:length(list_shp_reg_files)){
159
  path_to_shp <- dirname(list_shp_reg_files[[i]])
160
  path_to_shp <- in_dir1 
161
  #path_to_shp <- dirname(list_shp_reg_files[[i]])
162
  path_to_shp <- "/data/project/layers/commons/NEX_data/output_run6_global_analyses_09162014/shapefiles"
161 163
  layer_name <- sub(".shp","",basename(list_shp_reg_files[[i]]))
162 164
  shp1 <- readOGR(path_to_shp, layer_name)
163 165
  #shp1<-readOGR(dirname(list_shp_reg_files[[i]]),sub(".shp","",basename(list_shp_reg_files[[i]])))
......
168 170

  
169 171

  
170 172
#plot info: with labels
171
res_pix <- 480
173
res_pix <- 1200
172 174
col_mfrow <- 1
173 175
row_mfrow <- 1
174 176

  
......
183 185
  plot(shp1,add=T,border="blue")
184 186
  #plot(pt,add=T,cex=2,pch=5)
185 187
  label_id <- df_tile_processed$tile_id[i]
186
  text(coordinates(pt)[1],coordinates(pt)[2],labels=i,cex=1,col=c("red"))
188
  text(coordinates(pt)[1],coordinates(pt)[2],labels=i,cex=1.3,font=2,col=c("red"))
187 189
}
188 190
title(paste("Tiles location 20x20 degrees for ", region_name,sep=""))
189 191

  
......
292 294

  
293 295
##### Diagnostic gam
294 296
####
295
gam_diag_10x10 <- read.table("gam_diagnostic_10x10_df_run4_global_analyses_08142014.txt",sep=",")
296
gam_diag_10x10$month <- as.factor(gam_diag_10x10$month)
297
#gam_diag_10x10 <- read.table("gam_diagnostic_10x10_df_run4_global_analyses_08142014.txt",sep=",")
298
#gam_diag_10x10$month <- as.factor(gam_diag_10x10$month)
297 299

  
298
xyplot(rmse~pred_mod | tile_id,data=subset(as.data.frame(summary_metrics_v),
299
                                           pred_mod!="mod_kr"),type="b")
300
#xyplot(rmse~pred_mod | tile_id,data=subset(as.data.frame(summary_metrics_v),
301
#                                           pred_mod!="mod_kr"),type="b")
300 302

  
301
xyplot(n~pred_mod | tile_id,data=subset(as.data.frame(summary_metrics_v),
302
                                           pred_mod!="mod_kr"),type="h")
303
#xyplot(n~pred_mod | tile_id,data=subset(as.data.frame(summary_metrics_v),
304
#                                           pred_mod!="mod_kr"),type="h")
303 305

  
304
xyplot(n~pred_mod | tile_id,data=subset(as.data.frame(summary_metrics_v),
305
                                           pred_mod!="mod_kr"),type="h")
306
#xyplot(n~pred_mod | tile_id,data=subset(as.data.frame(summary_metrics_v),
307
#                                           pred_mod!="mod_kr"),type="h")
306 308

  
307
xyplot(n~month | tile_id + pred_mod,data=subset(as.data.frame(tb_month_s),
308
                                           pred_mod!="mod_kr"),type="h")
309
#xyplot(n~month | tile_id + pred_mod,data=subset(as.data.frame(tb_month_s),
310
#                                           pred_mod!="mod_kr"),type="h")
309 311

  
310 312
# 
311 313
## Figure 3b
......
349 351
####### Figure 5...
350 352
### Adding tiles do a plot of mod1 with tiles
351 353

  
352
r_pred <- raster(lf_pred_list[i])
354
#r_pred <- raster(lf_pred_list[i])
353 355
  
354 356
res_pix <- 480
355 357
col_mfrow <- 1
356 358
row_mfrow <- 1
357
  
359
model_name <- as.character(model_name)
360

  
361
i<-2
358 362
png(filename=paste("Figure5_tiles_with_models_predicted_surfaces_",model_name[i],"_",name_method_var,out_prefix,".png",sep=""),
359 363
    width=col_mfrow*res_pix,height=row_mfrow*res_pix)
360 364
  
361
plot(r_pred)
362
title(paste("Mosaiced",model_name[i],name_method_var,date_selected,"with tiles",sep=" "))
365
#plot(r_pred)
366
plot(reg_layer)
367

  
368
#title(paste("Mosaiced",model_name[i],name_method_var,date_selected,"with tiles",sep=" "))
363 369

  
364 370
#Add polygon tiles...
365 371
for(i in 1:length(list_shp_reg_files)){
......
415 421

  
416 422
coordinates(summary_metrics_v) <- cbind(summary_metrics_v$lon,summary_metrics_v$lat)
417 423
proj4string(summary_metrics_v) <- CRS_WGS84
418
lf_list <- lf_pred_list
424
#lf_list <- lf_pred_list
419 425
list_df_ac_mod <- vector("list",length=length(lf_pred_list))
420 426
for (i in 1:length(lf_list)){
421 427
  
......
430 436
    width=col_mfrow*res_pix,height=row_mfrow*res_pix)
431 437

  
432 438
  plot(r_pred)  
433

  
439
  
434 440
  #plot(ac_mod1,cex=sqrt(ac_mod1$rmse),pch=1,add=T)
435 441
  plot(ac_mod,cex=(ac_mod$rmse^2)/10,pch=1,add=T)
436 442
  #plot(ac_mod1,cex=(ac_mod1$rmse1)*2,pch=1,add=T)
......
446 452
#quick kriging...
447 453
#autokrige(rmse~1,r2,)
448 454

  
455

  
456
### Without 
457

  
458
list_df_ac_mod <- vector("list",length=length(lf_pred_list))
459
list_df_ac_mod <- vector("list",length=3)
460

  
461
for (i in 1:length(model_name)){
462
  
463
  ac_mod <- summary_metrics_v[summary_metrics_v$pred_mod==model_name[i],]
464
  #r_pred <- raster(lf_list[i])
465
  
466
  res_pix <- 1200
467
  #res_pix <- 480
468

  
469
  col_mfrow <- 1
470
  row_mfrow <- 1
471

  
472
  png(filename=paste("Figure6_ac_metrics_map_centroids_tile_",model_name[i],"_",out_prefix,".png",sep=""),
473
    width=col_mfrow*res_pix,height=row_mfrow*res_pix)
474

  
475
  #plot(r_pred)  
476
  #plot(reg_layer)
477
  #plot(ac_mod1,cex=sqrt(ac_mod1$rmse),pch=1,add=T)
478
  #plot(ac_mod,cex=(ac_mod$rmse^2)/10,pch=1,col="red",add=T)
479

  
480
  p_shp <- layer(sp.polygons(reg_layer, lwd=1, col='black'))
481
  #title("(a) Mean for 1 January")
482
  p <- bubble(ac_mod,"rmse",main=paste("Averrage RMSE per tile and by ",model_name[i]))
483
  p1 <- p+p_shp
484
  print(p1)
485
  #plot(ac_mod1,cex=(ac_mod1$rmse1)*2,pch=1,add=T)
486
  #title(paste("Averrage RMSE per tile and by ",model_name[i]))
487

  
488
  dev.off()
489
  
490
  ### Ranking by tile...
491
  #df_ac_mod <- 
492
  list_df_ac_mod[[i]] <- arrange(as.data.frame(ac_mod),desc(rmse))[,c("rmse","mae","tile_id")]
493
}
494

  
449 495
######################
450 496
### Figure 7: Delta and clim...
451 497

  

Also available in: Unified diff