13 |
13 |
|
14 |
14 |
## get % cloudy
|
15 |
15 |
mod09=raster("data/MOD09_2009.tif")
|
16 |
|
names(mod09)="MOD09CF"
|
|
16 |
names(mod09)="C5MOD09CF"
|
17 |
17 |
NAvalue(mod09)=0
|
18 |
18 |
|
19 |
19 |
mod35c5=raster("data/MOD35_2009.tif")
|
... | ... | |
25 |
25 |
system("/usr/local/gdal-1.10.0/bin/gdalbuildvrt -a_srs '+proj=sinu +lon_0=0 +x_0=0 +y_0=0 +a=6371007.181 +b=6371007.181 +units=m +no_defs' -sd 1 -b 1 data/MOD35C6.vrt `find /home/adamw/acrobates/adamw/projects/interp/data/modis/mod35/summary/ -name '*h[1]*_mean.nc'` ")
|
26 |
26 |
system("align.sh data/MOD35C6.vrt data/MOD09_2009.tif data/MOD35C6_2009.tif")
|
27 |
27 |
}
|
28 |
|
mod35c6=raster("data/MOD35C6_2009.tif")
|
|
28 |
mod35c6=raster("data/MOD35C6_2009_v1.tif")
|
29 |
29 |
names(mod35c6)="C6MOD35CF"
|
30 |
30 |
NAvalue(mod35c6)=255
|
31 |
31 |
|
32 |
32 |
## landcover
|
33 |
33 |
if(!file.exists("data/MCD12Q1_IGBP_2009_051_wgs84_1km.tif")){
|
34 |
34 |
system(paste("/usr/local/gdal-1.10.0/bin/gdalwarp -tr 0.008983153 0.008983153 -r mode -ot Byte -co \"COMPRESS=LZW\"",
|
35 |
|
" /mnt/data/jetzlab/Data/environ/global/MODIS/MCD12Q1/051/MCD12Q1_051_2009.tif ",
|
|
35 |
" /mnt/data/jetzlab/Data/environ/global/MODIS/MCD12Q1/051/MCD12Q1_051_2009_wgs84.tif ",
|
36 |
36 |
" -t_srs \"+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs\" ",
|
37 |
37 |
" -te -180.0044166 -60.0074610 180.0044166 90.0022083 ",
|
38 |
38 |
"data/MCD12Q1_IGBP_2009_051_wgs84_1km.tif -overwrite ",sep=""))}
|
... | ... | |
65 |
65 |
system("align.sh ~/acrobates/adamw/projects/interp/data/modis/MOD17/MOD17A3_Science_NPP_mean_00_12.tif data/MOD09_2009.tif data/MOD17.tif")
|
66 |
66 |
mod17=raster("data/MOD17.tif",format="GTiff")
|
67 |
67 |
NAvalue(mod17)=65535
|
68 |
|
names(mod17)="MOD17"
|
|
68 |
names(mod17)="MOD17_unscaled"
|
69 |
69 |
|
70 |
70 |
if(!file.exists("data/MOD17qc.tif"))
|
71 |
71 |
system("align.sh ~/acrobates/adamw/projects/interp/data/modis/MOD17/MOD17A3_Science_NPP_Qc_mean_00_12.tif data/MOD09_2009.tif data/MOD17qc.tif")
|
... | ... | |
77 |
77 |
if(!file.exists("data/MOD11_2009.tif"))
|
78 |
78 |
system("align.sh ~/acrobates/adamw/projects/interp/data/modis/mod11/2009/MOD11_LST_2009.tif data/MOD09_2009.tif data/MOD11_2009.tif")
|
79 |
79 |
mod11=raster("data/MOD11_2009.tif",format="GTiff")
|
80 |
|
names(mod11)="MOD11"
|
|
80 |
names(mod11)="MOD11_unscaled"
|
81 |
81 |
NAvalue(mod11)=0
|
82 |
82 |
if(!file.exists("data/MOD11qc_2009.tif"))
|
83 |
83 |
system("align.sh ~/acrobates/adamw/projects/interp/data/modis/mod11/2009/MOD11_Pmiss_2009.tif data/MOD09_2009.tif data/MOD11qc_2009.tif")
|
84 |
84 |
mod11qc=raster("data/MOD11qc_2009.tif",format="GTiff")
|
85 |
85 |
names(mod11qc)="MOD11CF"
|
86 |
86 |
|
87 |
|
|
88 |
|
### Create some summary objects for plotting
|
89 |
|
#difm=v6m-v5m
|
90 |
|
#v5v6compare=stack(v5m,v6m,difm)
|
91 |
|
#names(v5v6compare)=c("Collection 5","Collection 6","Difference (C6-C5)")
|
92 |
|
|
93 |
87 |
### Processing path
|
94 |
88 |
if(!file.exists("data/MOD35pp.tif"))
|
95 |
89 |
system("align.sh data/MOD35_ProcessPath.tif data/MOD09_2009.tif data/MOD35pp.tif")
|
... | ... | |
115 |
109 |
bgyr=colorRampPalette(c("blue","green","yellow","red"))
|
116 |
110 |
cols=bgyr(n)
|
117 |
111 |
|
118 |
|
#levelplot(lulcf,margin=F,layers="LULC")
|
119 |
|
|
120 |
112 |
|
121 |
113 |
### Transects
|
122 |
114 |
r1=Lines(list(
|
... | ... | |
134 |
126 |
73.943,27.419,
|
135 |
127 |
74.369,26.877
|
136 |
128 |
),ncol=2,byrow=T))),"India")
|
137 |
|
r4=Lines(list(
|
138 |
|
Line(matrix(c(
|
139 |
|
-5.164,42.270,
|
140 |
|
-4.948,42.162
|
141 |
|
),ncol=2,byrow=T))),"Spain")
|
|
129 |
#r4=Lines(list(
|
|
130 |
# Line(matrix(c(
|
|
131 |
# -5.164,42.270,
|
|
132 |
# -4.948,42.162
|
|
133 |
# ),ncol=2,byrow=T))),"Spain")
|
142 |
134 |
|
143 |
135 |
r5=Lines(list(
|
144 |
136 |
Line(matrix(c(
|
... | ... | |
146 |
138 |
33.802,12.894
|
147 |
139 |
),ncol=2,byrow=T))),"Sudan")
|
148 |
140 |
|
149 |
|
r6=Lines(list(
|
150 |
|
Line(matrix(c(
|
151 |
|
-63.353,-10.746,
|
152 |
|
-63.376,-9.310
|
153 |
|
),ncol=2,byrow=T))),"Brazil")
|
|
141 |
#r6=Lines(list(
|
|
142 |
# Line(matrix(c(
|
|
143 |
# -63.353,-10.746,
|
|
144 |
# -63.376,-9.310
|
|
145 |
# ),ncol=2,byrow=T))),"Brazil")
|
154 |
146 |
|
155 |
147 |
|
156 |
148 |
trans=SpatialLines(list(r1,r2,r3,r5),CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs "))
|
... | ... | |
179 |
171 |
td=crop(mod11,transb[x])
|
180 |
172 |
tdd=lapply(list(mod35c5,mod35c6,mod09,mod17,mod17qc,mod11,mod11qc,lulc,pp),function(l) resample(crop(l,transb[x]),td,method="ngb"))
|
181 |
173 |
## normalize MOD11 and MOD17
|
182 |
|
for(j in which(do.call(c,lapply(tdd,function(i) names(i)))%in%c("MOD11","MOD17"))){
|
|
174 |
for(j in which(do.call(c,lapply(tdd,function(i) names(i)))%in%c("MOD11_unscaled","MOD17_unscaled"))){
|
183 |
175 |
trange=cellStats(tdd[[j]],range)
|
184 |
176 |
tscaled=100*(tdd[[j]]-trange[1])/(trange[2]-trange[1])
|
185 |
177 |
tscaled@history=list(range=trange)
|
186 |
|
names(tscaled)=paste(names(tdd[[j]]),"scaled",collapse="_",sep="_")
|
|
178 |
names(tscaled)=sub("_unscaled","",names(tdd[[j]]))
|
187 |
179 |
tdd=c(tdd,tscaled)
|
188 |
180 |
}
|
189 |
181 |
return(brick(tdd))
|
... | ... | |
218 |
210 |
|
219 |
211 |
|
220 |
212 |
## comparison of % cloudy days
|
221 |
|
dif_c5_09=mod35c5-mod09
|
|
213 |
if(!file.exists("data/dif_c5_09.tif"))
|
|
214 |
overlay(mod35c5,mod09,fun=function(x,y) {return(x-y)},file="data/dif_c5_09.tif",format="GTiff",options=c("COMPRESS=LZW","ZLEVEL=9"),overwrite=T)
|
|
215 |
dif_c5_09=raster("data/dif_c5_09.tif",format="GTiff")
|
|
216 |
|
222 |
217 |
#dif_c6_09=mod35c6-mod09
|
223 |
218 |
#dif_c5_c6=mod35c5-mod35c6
|
224 |
219 |
|
225 |
|
## exploring various ways to compare cloud products
|
226 |
|
t1=trd1[[1]]
|
227 |
|
dif_p=calc(trd1[[1]], function(x) (x[1]-x[3])/(1-x[1]))
|
228 |
|
edge=calc(edge(subset(t1,"MCD12Q1"),classes=T,type="inner"),function(x) ifelse(x==1,1,NA))
|
229 |
|
edgeb=buffer(edge,width=5000)
|
230 |
|
edgeb=calc(edgeb,function(x) ifelse(is.na(x),0,1))
|
231 |
|
|
232 |
|
names(edge)="edge"
|
233 |
|
names(edgeb)="edgeb"
|
234 |
|
|
235 |
|
td1=as.data.frame(stack(t1,edge,edgeb))
|
|
220 |
## exploring various ways to compare cloud products along landcover or processing path edges
|
|
221 |
#t1=trd1[[1]]
|
|
222 |
#dif_p=calc(trd1[[1]], function(x) (x[1]-x[3])/(1-x[1]))
|
|
223 |
#edge=calc(edge(subset(t1,"MCD12Q1"),classes=T,type="inner"),function(x) ifelse(x==1,1,NA))
|
|
224 |
#edgeb=buffer(edge,width=5000)
|
|
225 |
#edgeb=calc(edgeb,function(x) ifelse(is.na(x),0,1))
|
|
226 |
#names(edge)="edge"
|
|
227 |
#names(edgeb)="edgeb"
|
|
228 |
#td1=as.data.frame(stack(t1,edge,edgeb))
|
|
229 |
#cor(td1$MOD17,td1$C6MOD35,use="complete",method="spearman")
|
|
230 |
#cor(td1$MOD17[td1$edgeb==1],td1$C5MOD35[td1$edgeb==1],use="complete",method="spearman")
|
|
231 |
|
|
232 |
### Correlations
|
|
233 |
#trdw=cast(trd,trans+x+y~variable,value="value")
|
|
234 |
#cor(trdw$MOD17,trdw$C5MOD35,use="complete",method="spearman")
|
236 |
235 |
|
237 |
|
cor(td1$MOD17,td1$C5MOD35,use="complete",method="spearman")
|
238 |
|
cor(td1$MOD17[td1$edgeb==1],td1$C5MOD35[td1$edgeb==1],use="complete",method="spearman")
|
239 |
|
round(cor(td1,use="complete",method="spearman"),2)
|
240 |
|
## tests
|
241 |
|
cor.test(td1$MOD17,td1$C5MOD35,use="complete",method="spearman",alternative="two.sided")
|
242 |
|
cor.test(td1$MOD17,td1$C6MOD35,use="complete",method="spearman",alternative="two.sided")
|
243 |
|
cor.test(td1$MOD17,td1$C5MOD35,use="complete",method="spearman",alternative="two.sided")
|
|
236 |
#Across all pixels in the four regions analyzed in Figure 3 there is a much larger correlation between mean NPP and the C5 MOD35 CF (Spearman’s ρ = -0.61, n=58,756) than the C6 MOD35 CF (ρ = 0.00, n=58,756) or MOD09 (ρ = -0.07, n=58,756) products.
|
|
237 |
#by(trdw,trdw$trans,function(x) cor(as.data.frame(na.omit(x[,c("C5MOD35CF","C6MOD35CF","C5MOD09CF","MOD17","MOD11")])),use="complete",method="spearman"))
|
244 |
238 |
|
245 |
|
cor.test(
|
246 |
|
splom(t1)
|
247 |
|
plot(mod17,mod17qc)
|
248 |
|
xyplot(MOD17~C5MOD35CF|edgeb,data=td1)
|
249 |
|
bwplot(MCD12Q1~C5MOD35CF|edgeb,data=td1)
|
250 |
239 |
|
251 |
|
plot(dif_p)
|
|
240 |
## table of correlations
|
|
241 |
#trdw_cor=as.data.frame(na.omit(trdw[,c("C5MOD35CF","C6MOD35CF","C5MOD09CF","MOD17","MOD11")]))
|
|
242 |
#nrow(trdw_cor)
|
|
243 |
#round(cor(trdw_cor,method="spearman"),2)
|
252 |
244 |
|
253 |
|
#rondonia=trd[trd$trans=="Brazil",]
|
254 |
|
#trd=trd[trd$trans!="Brazil",]
|
255 |
245 |
|
|
246 |
## set up some graphing parameters
|
256 |
247 |
at=seq(0,100,leng=100)
|
257 |
248 |
bgyr=colorRampPalette(c("purple","blue","green","yellow","orange","red","red"))
|
258 |
249 |
bgrayr=colorRampPalette(c("purple","blue","grey","red","red"))
|
... | ... | |
265 |
256 |
g1=levelplot(stack(mod35c5,mod09),xlab=" ",scales=list(x=list(draw=F),y=list(alternating=1)),col.regions=cols,at=at)+layer(sp.polygons(bbs[1:4],lwd=2))+layer(sp.lines(coast,lwd=.5))
|
266 |
257 |
|
267 |
258 |
g2=levelplot(dif_c5_09,col.regions=bgrayr(100),at=seq(-70,70,len=100),margin=F,ylab=" ",colorkey=list("right"))+layer(sp.polygons(bbs[1:4],lwd=2))+layer(sp.lines(coast,lwd=.5))
|
268 |
|
g2$strip=strip.custom(var.name="Difference (C5MOD35-MOD09)",style=1,strip.names=T,strip.levels=F) #update strip text
|
269 |
|
bg <- trellis.par.get("panel.background")
|
270 |
|
bg$col <- "white"
|
271 |
|
trellis.par.set("panel.background",bg)
|
272 |
|
g3=histogram(dif_c5_09,col="black",border=NA,scales=list(x=list(at=c(-50,0,50)),y=list(draw=F),cex=1))+layer(panel.abline(v=0,col="red",lwd=2))
|
|
259 |
g2$strip=strip.custom(var.name="Difference (C5MOD35-C5MOD09)",style=1,strip.names=T,strip.levels=F) #update strip text
|
|
260 |
#g3=histogram(dif_c5_09,col="black",border=NA,scales=list(x=list(at=c(-50,0,50)),y=list(draw=F),cex=1))+layer(panel.abline(v=0,col="red",lwd=2))
|
273 |
261 |
|
274 |
262 |
### regional plots
|
275 |
|
p1=useOuterStrips(levelplot(value~x*y|variable+trans,data=trd[!trd$variable%in%c("MCD12Q1","MOD35pp"),],asp=1,scales=list(draw=F,rot=0,relation="free"),
|
|
263 |
p1=useOuterStrips(levelplot(value~x*y|variable+trans,data=trd[!trd$variable%in%c("MOD17_unscaled","MOD11_unscaled","MCD12Q1","MOD35pp"),],asp=1,scales=list(draw=F,rot=0,relation="free"),
|
276 |
264 |
at=at,col.regions=cols,maxpixels=7e6,
|
277 |
|
ylab="Latitude",xlab="Longitude"),strip = strip.custom(par.strip.text=list(cex=.75)))+layer(sp.lines(trans,lwd=2))
|
|
265 |
ylab="Latitude",xlab="Longitude"),strip = strip.custom(par.strip.text=list(cex=.7)))+layer(sp.lines(trans,lwd=2))
|
278 |
266 |
|
279 |
267 |
p2=useOuterStrips(
|
280 |
268 |
levelplot(value~x*y|variable+trans,data=trd[trd$variable%in%c("MCD12Q1"),],
|
... | ... | |
284 |
272 |
right=list(fun=draw.key(list(columns=1,#title="MCD12Q1 \n IGBP Land \n Cover",
|
285 |
273 |
rectangles=list(col=IGBP$col,size=1),
|
286 |
274 |
text=list(as.character(IGBP$ID),at=IGBP$ID-.5))))),
|
287 |
|
ylab="",xlab=" "),strip = strip.custom(par.strip.text=list(cex=.75)),strip.left=F)+layer(sp.lines(trans,lwd=2))
|
|
275 |
ylab="",xlab=" "),strip = strip.custom(par.strip.text=list(cex=.7)),strip.left=F)+layer(sp.lines(trans,lwd=2))
|
288 |
276 |
p3=useOuterStrips(
|
289 |
277 |
levelplot(value~x*y|variable+trans,data=trd[trd$variable%in%c("MOD35pp"),],
|
290 |
278 |
asp=1,scales=list(draw=F,rot=0,relation="free"),colorkey=F,
|
... | ... | |
293 |
281 |
right=list(fun=draw.key(list(columns=1,#title="MOD35 \n Processing \n Path",
|
294 |
282 |
rectangles=list(col=c("blue","cyan","tan","darkgreen"),size=1),
|
295 |
283 |
text=list(c("Water","Coast","Desert","Land")))))),
|
296 |
|
ylab="",xlab=" "),strip = strip.custom(par.strip.text=list(cex=.75)),strip.left=F)+layer(sp.lines(trans,lwd=2))
|
|
284 |
ylab="",xlab=" "),strip = strip.custom(par.strip.text=list(cex=.7)),strip.left=F)+layer(sp.lines(trans,lwd=2))
|
297 |
285 |
|
298 |
286 |
## transects
|
299 |
287 |
p4=xyplot(value~dist|transect,groups=variable,type=c("smooth","p"),
|
300 |
288 |
data=transd,panel=function(...,subscripts=subscripts) {
|
301 |
289 |
td=transd[subscripts,]
|
302 |
290 |
## mod09
|
303 |
|
imod09=td$variable=="MOD09CF"
|
|
291 |
imod09=td$variable=="C5MOD09CF"
|
304 |
292 |
panel.xyplot(td$dist[imod09],td$value[imod09],type=c("p","smooth"),span=0.2,subscripts=1:sum(imod09),col="red",pch=16,cex=.25)
|
305 |
293 |
## mod35C5
|
306 |
294 |
imod35=td$variable=="C5MOD35CF"
|
... | ... | |
323 |
311 |
panel.xyplot(td$dist[imod11qc],td$value[imod11qc],type=c("p","smooth"),npoints=100,span=qcspan,subscripts=1:sum(imod11qc),col="orange",pch=16,cex=.25)
|
324 |
312 |
## land
|
325 |
313 |
path=td[td$variable=="MOD35pp",]
|
326 |
|
panel.segments(path$dist,-5,c(path$dist[-1],max(path$dist,na.rm=T)),-5,col=c("blue","cyan","tan","darkgreen")[path$value+1],subscripts=1:nrow(path),lwd=15,type="l")
|
|
314 |
panel.segments(path$dist,-10,c(path$dist[-1],max(path$dist,na.rm=T)),-10,col=c("blue","cyan","tan","darkgreen")[path$value+1],subscripts=1:nrow(path),lwd=10,type="l")
|
327 |
315 |
land=td[td$variable=="MCD12Q1",]
|
328 |
|
panel.segments(land$dist,-10,c(land$dist[-1],max(land$dist,na.rm=T)),-10,col=IGBP$col[land$value+1],subscripts=1:nrow(land),lwd=15,type="l")
|
|
316 |
panel.segments(land$dist,-20,c(land$dist[-1],max(land$dist,na.rm=T)),-20,col=IGBP$col[land$value+1],subscripts=1:nrow(land),lwd=10,type="l")
|
329 |
317 |
},subscripts=T,par.settings = list(grid.pars = list(lineend = "butt")),
|
330 |
318 |
scales=list(
|
331 |
319 |
x=list(alternating=1,relation="free"),#, lim=c(0,70)),
|
332 |
|
y=list(at=c(-10,-5,seq(0,100,len=5)),
|
333 |
|
labels=c("IGBP","MOD35",seq(0,100,len=5)),
|
334 |
|
lim=c(-15,100))),
|
|
320 |
y=list(at=c(-18,-10,seq(0,100,len=5)),
|
|
321 |
labels=c("MCD12Q1 IGBP","MOD35 path",seq(0,100,len=5)),
|
|
322 |
lim=c(-25,100)),
|
|
323 |
alternating=F),
|
335 |
324 |
xlab="Distance Along Transect (km)", ylab="% Missing Data / % of Maximum Value",
|
336 |
325 |
legend=list(
|
337 |
326 |
bottom=list(fun=draw.key(list( rep=FALSE,columns=1,title=" ",
|
338 |
|
## text=list(c("MOD09 % Cloudy","C5 MOD35 % Cloudy","C6 MOD35 % Cloudy","MOD17 % Missing","MOD17 (scaled)","MOD11 % Missing","MOD11 (scaled)")),
|
339 |
|
lines=list(type=c("b","b","b","b","b","l","b","l"),pch=16,cex=.5,lty=c(0,1,1,1,1,5,1,5),col=c("transparent","red","blue","black","darkgreen","darkgreen","orange","orange")),
|
340 |
|
text=list(c("MODIS Products","MOD09 % Cloudy","C5 MOD35 % Cloudy","C6 MOD35 % Cloudy","MOD17 % Missing","MOD17 (scaled)","MOD11 % Missing","MOD11 (scaled)")),
|
|
327 |
lines=list(type=c("b","b","b","b","b","l","b","l"),pch=16,cex=.5,
|
|
328 |
lty=c(0,1,1,1,1,5,1,5),
|
|
329 |
col=c("transparent","red","blue","black","darkgreen","darkgreen","orange","orange")),
|
|
330 |
text=list(
|
|
331 |
c("MODIS Products","C5 MOD09 % Cloudy","C5 MOD35 % Cloudy","C6 MOD35 % Cloudy","MOD17 % Missing","MOD17 (scaled)","MOD11 % Missing","MOD11 (scaled)")),
|
341 |
332 |
rectangles=list(border=NA,col=c(NA,"tan","darkgreen")),
|
342 |
333 |
text=list(c("C5 MOD35 Processing Path","Desert","Land")),
|
343 |
|
rectangles=list(border=NA,col=c(NA,IGBP$col[sort(unique(transd$value[transd$variable=="MCD12Q1"]+1))])),
|
344 |
|
text=list(c("MCD12Q1 IGBP Land Cover",IGBP$class[sort(unique(transd$value[transd$variable=="MCD12Q1"]+1))])))))),
|
345 |
|
strip = strip.custom(par.strip.text=list(cex=.75)))
|
346 |
|
#print(p4)
|
347 |
|
|
348 |
|
#trdw=cast(trd,trans+x+y~variable,value="value")
|
349 |
|
#transdw=cast(transd,transect+dist~variable,value="value")
|
350 |
|
#xyplot(MOD11CF~C5MOD35CF|transect,groups=MCD12Q1,data=transdw,pch=16,cex=1,scales=list(relation="free"))
|
351 |
|
#xyplot(MOD17~C5MOD35CF|trans,groups=MCD12Q1,data=trdw,pch=16,cex=1,scales=list(relation="free"))
|
|
334 |
rectangles=list(border=NA,col=c(NA,IGBP$col[sort(unique(transd$value[transd$variable=="MCD12Q1"]+1))])),
|
|
335 |
text=list(c("MCD12Q1 IGBP Land Cover",IGBP$class[sort(unique(transd$value[transd$variable=="MCD12Q1"]+1))])))))),
|
|
336 |
strip = strip.custom(par.strip.text=list(cex=.75)))
|
|
337 |
print(p4)
|
352 |
338 |
|
353 |
|
#p5=levelplot(value~x*y|variable,data=rondonia,asp=1,scales=list(draw=F,rot=0,relation="free"),colorkey=T)#,
|
354 |
|
#print(p5)
|
355 |
339 |
|
356 |
340 |
|
357 |
341 |
CairoPDF("output/mod35compare.pdf",width=11,height=7)
|
358 |
342 |
#CairoPNG("output/mod35compare_%d.png",units="in", width=11,height=8.5,pointsize=4000,dpi=1200,antialias="subpixel")
|
359 |
343 |
### Global Comparison
|
360 |
|
print(g1)
|
361 |
344 |
print(g1,position=c(0,.35,1,1),more=T)
|
362 |
345 |
print(g2,position=c(0,0,1,0.415),more=F)
|
363 |
346 |
#print(g3,position=c(0.31,0.06,.42,0.27),more=F)
|
... | ... | |
393 |
376 |
td[td$transect=="Venezuela",]
|
394 |
377 |
|
395 |
378 |
|
396 |
|
|
397 |
|
|
398 |
|
## scatterplot of MOD35 vs MOD09
|
399 |
|
trdl=cast(trans+x+y~variable,value="value",data=trd)
|
400 |
|
xyplot(MOD35C5qc~MOD09qc|trans+as.factor(MOD35pp),pch=16,cex=.2,data=trdl,auto.key=T)+layer(panel.abline(0,1))
|
401 |
|
|
402 |
|
|
403 |
|
### LANDCOVER
|
404 |
|
levelplot(lulc,col.regions=IGBP$col,scales=list(cex=2),colorkey=list(space="right",at=0:17,labels=list(at=seq(0.5,16.5,by=1),labels=levels(lulc)[[1]]$class,cex=2)),margin=F)
|
405 |
|
|
406 |
|
levelplot(mcompare,col.regions=cols,at=at,margin=F,sub="Frequency of MOD35 Clouds in March")
|
407 |
|
#levelplot(dif,col.regions=bgyr(20),margin=F)
|
408 |
|
levelplot(mdiff,col.regions=bgyr(100),at=seq(mdiff@data@min,mdiff@data@max,len=100),margin=F)
|
409 |
|
|
410 |
|
|
411 |
|
boxplot(as.matrix(subset(dif,subset=1))~forest,varwidth=T,notch=T);abline(h=0)
|
412 |
|
|
413 |
|
|
414 |
|
levelplot(modprod,main="Missing Data (%) in MOD17 (NPP) and MOD43 (BRDF Reflectance)",
|
415 |
|
sub="Tile H11v08 (Venezuela)",col.regions=cols,at=at)
|
416 |
|
|
417 |
|
|
418 |
|
|
419 |
|
|
420 |
|
levelplot(modprod,main="Missing Data (%) in MOD17 (NPP) and MOD43 (BRDF Reflectance)",
|
421 |
|
sub="Tile H11v08 (Venezuela)",col.regions=cols,at=at,
|
422 |
|
xlim=c(-7300000,-6670000),ylim=c(0,600000))
|
423 |
|
|
424 |
|
levelplot(v5m,main="Missing Data (%) in MOD17 (NPP) and MOD43 (BRDF Reflectance)",
|
425 |
|
sub="Tile H11v08 (Venezuela)",col.regions=cols,at=at,
|
426 |
|
xlim=c(-7200000,-6670000),ylim=c(0,400000),margin=F)
|
427 |
|
|
428 |
|
|
429 |
|
levelplot(subset(v5v6compare,1:2),main="Proportion Cloudy Days (%) in Collection 5 and 6 MOD35",
|
430 |
|
sub="Tile H11v08 (Venezuela)",col.regions=cols,at=at,
|
431 |
|
margin=F)
|
432 |
|
|
433 |
|
levelplot(subset(v5v6compare,1:2),main="Proportion Cloudy Days (%) in Collection 5 and 6 MOD35",
|
434 |
|
sub="Tile H11v08 (Venezuela)",col.regions=cols,at=at,
|
435 |
|
xlim=c(-7200000,-6670000),ylim=c(0,400000),margin=F)
|
436 |
|
|
437 |
|
levelplot(subset(v5v6compare,1:2),main="Proportion Cloudy Days (%) in Collection 5 and 6 MOD35",
|
438 |
|
sub="Tile H11v08 (Venezuela)",col.regions=cols,at=at,
|
439 |
|
xlim=c(-7500000,-7200000),ylim=c(700000,1000000),margin=F)
|
440 |
|
|
441 |
|
|
442 |
|
dev.off()
|
443 |
|
|
444 |
|
### smoothing plots
|
445 |
|
## explore smoothed version
|
446 |
|
td=subset(v6,m)
|
447 |
|
## build weight matrix
|
448 |
|
s=3
|
449 |
|
w=matrix(1/(s*s),nrow=s,ncol=s)
|
450 |
|
#w[s-1,s-1]=4/12; w
|
451 |
|
td2=focal(td,w=w)
|
452 |
|
td3=stack(td,td2)
|
453 |
|
|
454 |
|
levelplot(td3,col.regions=cols,at=at,margin=F)
|
455 |
|
|
456 |
|
dev.off()
|
457 |
|
plot(stack(difm,lulc))
|
458 |
|
|
459 |
|
### ROI
|
460 |
|
tile_ll=projectExtent(v6, "+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs")
|
461 |
|
|
462 |
|
62,59
|
463 |
|
0,3
|
464 |
|
|
465 |
|
|
466 |
|
|
467 |
|
#### export KML timeseries
|
|
379 |
#### export KML
|
468 |
380 |
library(plotKML)
|
469 |
|
tile="h11v08"
|
470 |
|
file=paste("summary/MOD35_",tile,".nc",sep="")
|
471 |
|
system(paste("gdalwarp -overwrite -multi -ot INT16 -r cubicspline -srcnodata 255 -dstnodata 255 -s_srs '+proj=sinu +lon_0=0 +x_0=0 +y_0=0 +a=6371007.181 +b=6371007.181 +units=m +no_defs' -t_srs 'EPSG:4326' NETCDF:",file,":PCloud MOD35_",tile,".tif",sep=""))
|
472 |
|
|
473 |
|
v6sp=brick(paste("MOD35_",tile,".tif",sep=""))
|
474 |
|
v6sp=readAll(v6sp)
|
475 |
381 |
|
476 |
|
## wasn't working with line below, perhaps Z should just be text? not date?
|
477 |
|
v6sp=setZ(v6sp,as.Date(paste("2011-",1:12,"-15",sep="")))
|
478 |
|
names(v6sp)=month.name
|
|
382 |
kml_open("output/modiscloud.kml")
|
479 |
383 |
|
480 |
|
kml_open("output/mod35.kml")
|
|
384 |
readAll(mod35c5)
|
481 |
385 |
|
482 |
|
|
483 |
|
kml_layer.RasterBrick(v6sp,
|
484 |
|
plot.legend = TRUE, dtime = "", tz = "GMT",
|
485 |
|
z.lim = c(0,100),colour_scale = get("colour_scale_numeric", envir = plotKML.opts))
|
|
386 |
kml_layer.Raster(mod35c5,
|
|
387 |
plot.legend = TRUE,raster_name="Collection 5 MOD35 Cloud Frequency",
|
|
388 |
z.lim = c(0,100),colour_scale = get("colour_scale_numeric", envir = plotKML.opts),
|
486 |
389 |
# home_url = get("home_url", envir = plotKML.opts),
|
487 |
390 |
# metadata = NULL, html.table = NULL,
|
488 |
|
# altitudeMode = "clampToGround", balloon = FALSE,
|
|
391 |
altitudeMode = "clampToGround", balloon = FALSE
|
489 |
392 |
)
|
490 |
393 |
|
|
394 |
system(paste("gdal_translate -of KMLSUPEROVERLAY ",mod35c5@file@name," output/mod35c5.kmz -co FORMAT=JPEG"))
|
|
395 |
|
491 |
396 |
logo = "http://static.tumblr.com/t0afs9f/KWTm94tpm/yale_logo.png"
|
492 |
397 |
kml_screen(image.file = logo, position = "UL", sname = "YALE logo",size=c(.1,.1))
|
493 |
|
kml_close("mod35.kml")
|
494 |
|
kml_compress("mod35.kml",files=c(paste(month.name,".png",sep=""),"obj_legend.png"),zip="/usr/bin/zip")
|
|
398 |
kml_close("modiscloud.kml")
|
|
399 |
kml_compress("modiscloud.kml",files=c(paste(month.name,".png",sep=""),"obj_legend.png"),zip="/usr/bin/zip")
|
Submitted MOD35-landcover bias paper with code from this commit. Also added short script to test swtif program.