Project

General

Profile

« Previous | Next » 

Revision d39ab57e

Added by Adam Wilson over 11 years ago

Submitted MOD35-landcover bias paper with code from this commit. Also added short script to test swtif program.

View differences:

climate/procedures/MOD35C5_Evaluation.r
13 13

  
14 14
## get % cloudy
15 15
mod09=raster("data/MOD09_2009.tif")
16
names(mod09)="MOD09CF"
16
names(mod09)="C5MOD09CF"
17 17
NAvalue(mod09)=0
18 18

  
19 19
mod35c5=raster("data/MOD35_2009.tif")
......
25 25
  system("/usr/local/gdal-1.10.0/bin/gdalbuildvrt  -a_srs '+proj=sinu +lon_0=0 +x_0=0 +y_0=0 +a=6371007.181 +b=6371007.181 +units=m +no_defs' -sd 1 -b 1 data/MOD35C6.vrt `find /home/adamw/acrobates/adamw/projects/interp/data/modis/mod35/summary/ -name '*h[1]*_mean.nc'` ")
26 26
  system("align.sh data/MOD35C6.vrt data/MOD09_2009.tif data/MOD35C6_2009.tif")
27 27
}
28
mod35c6=raster("data/MOD35C6_2009.tif")
28
mod35c6=raster("data/MOD35C6_2009_v1.tif")
29 29
names(mod35c6)="C6MOD35CF"
30 30
NAvalue(mod35c6)=255
31 31

  
32 32
## landcover
33 33
if(!file.exists("data/MCD12Q1_IGBP_2009_051_wgs84_1km.tif")){
34 34
  system(paste("/usr/local/gdal-1.10.0/bin/gdalwarp -tr 0.008983153 0.008983153 -r mode -ot Byte -co \"COMPRESS=LZW\"",
35
               " /mnt/data/jetzlab/Data/environ/global/MODIS/MCD12Q1/051/MCD12Q1_051_2009.tif ",
35
               " /mnt/data/jetzlab/Data/environ/global/MODIS/MCD12Q1/051/MCD12Q1_051_2009_wgs84.tif ",
36 36
               " -t_srs \"+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs\" ",
37 37
               " -te -180.0044166 -60.0074610 180.0044166 90.0022083 ",
38 38
               "data/MCD12Q1_IGBP_2009_051_wgs84_1km.tif -overwrite ",sep=""))}
......
65 65
system("align.sh ~/acrobates/adamw/projects/interp/data/modis/MOD17/MOD17A3_Science_NPP_mean_00_12.tif data/MOD09_2009.tif data/MOD17.tif")
66 66
mod17=raster("data/MOD17.tif",format="GTiff")
67 67
NAvalue(mod17)=65535
68
names(mod17)="MOD17"
68
names(mod17)="MOD17_unscaled"
69 69

  
70 70
if(!file.exists("data/MOD17qc.tif"))
71 71
  system("align.sh ~/acrobates/adamw/projects/interp/data/modis/MOD17/MOD17A3_Science_NPP_Qc_mean_00_12.tif data/MOD09_2009.tif data/MOD17qc.tif")
......
77 77
if(!file.exists("data/MOD11_2009.tif"))
78 78
  system("align.sh ~/acrobates/adamw/projects/interp/data/modis/mod11/2009/MOD11_LST_2009.tif data/MOD09_2009.tif data/MOD11_2009.tif")
79 79
mod11=raster("data/MOD11_2009.tif",format="GTiff")
80
names(mod11)="MOD11"
80
names(mod11)="MOD11_unscaled"
81 81
NAvalue(mod11)=0
82 82
if(!file.exists("data/MOD11qc_2009.tif"))
83 83
  system("align.sh ~/acrobates/adamw/projects/interp/data/modis/mod11/2009/MOD11_Pmiss_2009.tif data/MOD09_2009.tif data/MOD11qc_2009.tif")
84 84
mod11qc=raster("data/MOD11qc_2009.tif",format="GTiff")
85 85
names(mod11qc)="MOD11CF"
86 86

  
87

  
88
### Create some summary objects for plotting
89
#difm=v6m-v5m
90
#v5v6compare=stack(v5m,v6m,difm)
91
#names(v5v6compare)=c("Collection 5","Collection 6","Difference (C6-C5)")
92

  
93 87
### Processing path
94 88
if(!file.exists("data/MOD35pp.tif"))
95 89
system("align.sh data/MOD35_ProcessPath.tif data/MOD09_2009.tif data/MOD35pp.tif")
......
115 109
bgyr=colorRampPalette(c("blue","green","yellow","red"))
116 110
cols=bgyr(n)
117 111

  
118
#levelplot(lulcf,margin=F,layers="LULC")
119

  
120 112

  
121 113
### Transects
122 114
r1=Lines(list(
......
134 126
                73.943,27.419,
135 127
                74.369,26.877
136 128
                ),ncol=2,byrow=T))),"India")
137
r4=Lines(list(
138
  Line(matrix(c(
139
                -5.164,42.270,
140
                -4.948,42.162
141
                ),ncol=2,byrow=T))),"Spain")
129
#r4=Lines(list(
130
#  Line(matrix(c(
131
#                -5.164,42.270,
132
#                -4.948,42.162
133
#                ),ncol=2,byrow=T))),"Spain")
142 134

  
143 135
r5=Lines(list(
144 136
  Line(matrix(c(
......
146 138
                33.802,12.894
147 139
                ),ncol=2,byrow=T))),"Sudan")
148 140

  
149
r6=Lines(list(
150
  Line(matrix(c(
151
                -63.353,-10.746,
152
                -63.376,-9.310
153
                ),ncol=2,byrow=T))),"Brazil")
141
#r6=Lines(list(
142
#  Line(matrix(c(
143
#                -63.353,-10.746,
144
#                -63.376,-9.310
145
#                ),ncol=2,byrow=T))),"Brazil")
154 146

  
155 147

  
156 148
trans=SpatialLines(list(r1,r2,r3,r5),CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs "))
......
179 171
  td=crop(mod11,transb[x])
180 172
  tdd=lapply(list(mod35c5,mod35c6,mod09,mod17,mod17qc,mod11,mod11qc,lulc,pp),function(l) resample(crop(l,transb[x]),td,method="ngb"))
181 173
  ## normalize MOD11 and MOD17
182
  for(j in which(do.call(c,lapply(tdd,function(i) names(i)))%in%c("MOD11","MOD17"))){
174
  for(j in which(do.call(c,lapply(tdd,function(i) names(i)))%in%c("MOD11_unscaled","MOD17_unscaled"))){
183 175
    trange=cellStats(tdd[[j]],range)
184 176
    tscaled=100*(tdd[[j]]-trange[1])/(trange[2]-trange[1])
185 177
    tscaled@history=list(range=trange)
186
    names(tscaled)=paste(names(tdd[[j]]),"scaled",collapse="_",sep="_")
178
    names(tscaled)=sub("_unscaled","",names(tdd[[j]]))
187 179
    tdd=c(tdd,tscaled)
188 180
  }
189 181
  return(brick(tdd))
......
218 210

  
219 211

  
220 212
## comparison of % cloudy days
221
dif_c5_09=mod35c5-mod09
213
if(!file.exists("data/dif_c5_09.tif"))
214
  overlay(mod35c5,mod09,fun=function(x,y) {return(x-y)},file="data/dif_c5_09.tif",format="GTiff",options=c("COMPRESS=LZW","ZLEVEL=9"),overwrite=T)
215
dif_c5_09=raster("data/dif_c5_09.tif",format="GTiff")
216

  
222 217
#dif_c6_09=mod35c6-mod09
223 218
#dif_c5_c6=mod35c5-mod35c6
224 219

  
225
## exploring various ways to compare cloud products
226
t1=trd1[[1]]
227
dif_p=calc(trd1[[1]], function(x) (x[1]-x[3])/(1-x[1]))
228
edge=calc(edge(subset(t1,"MCD12Q1"),classes=T,type="inner"),function(x) ifelse(x==1,1,NA))
229
edgeb=buffer(edge,width=5000)
230
edgeb=calc(edgeb,function(x) ifelse(is.na(x),0,1))
231

  
232
names(edge)="edge"
233
names(edgeb)="edgeb"
234

  
235
td1=as.data.frame(stack(t1,edge,edgeb))
220
## exploring various ways to compare cloud products along landcover or processing path edges
221
#t1=trd1[[1]]
222
#dif_p=calc(trd1[[1]], function(x) (x[1]-x[3])/(1-x[1]))
223
#edge=calc(edge(subset(t1,"MCD12Q1"),classes=T,type="inner"),function(x) ifelse(x==1,1,NA))
224
#edgeb=buffer(edge,width=5000)
225
#edgeb=calc(edgeb,function(x) ifelse(is.na(x),0,1))
226
#names(edge)="edge"
227
#names(edgeb)="edgeb"
228
#td1=as.data.frame(stack(t1,edge,edgeb))
229
#cor(td1$MOD17,td1$C6MOD35,use="complete",method="spearman")
230
#cor(td1$MOD17[td1$edgeb==1],td1$C5MOD35[td1$edgeb==1],use="complete",method="spearman")
231

  
232
### Correlations
233
#trdw=cast(trd,trans+x+y~variable,value="value")
234
#cor(trdw$MOD17,trdw$C5MOD35,use="complete",method="spearman")
236 235

  
237
cor(td1$MOD17,td1$C5MOD35,use="complete",method="spearman")
238
cor(td1$MOD17[td1$edgeb==1],td1$C5MOD35[td1$edgeb==1],use="complete",method="spearman")
239
round(cor(td1,use="complete",method="spearman"),2)
240
## tests
241
cor.test(td1$MOD17,td1$C5MOD35,use="complete",method="spearman",alternative="two.sided")
242
cor.test(td1$MOD17,td1$C6MOD35,use="complete",method="spearman",alternative="two.sided")
243
cor.test(td1$MOD17,td1$C5MOD35,use="complete",method="spearman",alternative="two.sided")
236
#Across all pixels in the four regions analyzed in Figure 3 there is a much larger correlation between mean NPP and the C5 MOD35 CF (Spearman’s ρ = -0.61, n=58,756) than the C6 MOD35 CF (ρ = 0.00, n=58,756) or MOD09 (ρ = -0.07, n=58,756) products.  
237
#by(trdw,trdw$trans,function(x) cor(as.data.frame(na.omit(x[,c("C5MOD35CF","C6MOD35CF","C5MOD09CF","MOD17","MOD11")])),use="complete",method="spearman"))
244 238

  
245
cor.test(
246
splom(t1)
247
plot(mod17,mod17qc)
248
xyplot(MOD17~C5MOD35CF|edgeb,data=td1)
249
bwplot(MCD12Q1~C5MOD35CF|edgeb,data=td1)
250 239

  
251
plot(dif_p)
240
## table of correlations
241
#trdw_cor=as.data.frame(na.omit(trdw[,c("C5MOD35CF","C6MOD35CF","C5MOD09CF","MOD17","MOD11")]))
242
#nrow(trdw_cor)
243
#round(cor(trdw_cor,method="spearman"),2)
252 244

  
253
#rondonia=trd[trd$trans=="Brazil",]
254
#trd=trd[trd$trans!="Brazil",]
255 245

  
246
## set up some graphing parameters
256 247
at=seq(0,100,leng=100)
257 248
bgyr=colorRampPalette(c("purple","blue","green","yellow","orange","red","red"))
258 249
bgrayr=colorRampPalette(c("purple","blue","grey","red","red"))
......
265 256
g1=levelplot(stack(mod35c5,mod09),xlab=" ",scales=list(x=list(draw=F),y=list(alternating=1)),col.regions=cols,at=at)+layer(sp.polygons(bbs[1:4],lwd=2))+layer(sp.lines(coast,lwd=.5))
266 257

  
267 258
g2=levelplot(dif_c5_09,col.regions=bgrayr(100),at=seq(-70,70,len=100),margin=F,ylab=" ",colorkey=list("right"))+layer(sp.polygons(bbs[1:4],lwd=2))+layer(sp.lines(coast,lwd=.5))
268
g2$strip=strip.custom(var.name="Difference (C5MOD35-MOD09)",style=1,strip.names=T,strip.levels=F)  #update strip text
269
bg <- trellis.par.get("panel.background")
270
bg$col <- "white"
271
trellis.par.set("panel.background",bg)
272
g3=histogram(dif_c5_09,col="black",border=NA,scales=list(x=list(at=c(-50,0,50)),y=list(draw=F),cex=1))+layer(panel.abline(v=0,col="red",lwd=2))
259
g2$strip=strip.custom(var.name="Difference (C5MOD35-C5MOD09)",style=1,strip.names=T,strip.levels=F)  #update strip text
260
#g3=histogram(dif_c5_09,col="black",border=NA,scales=list(x=list(at=c(-50,0,50)),y=list(draw=F),cex=1))+layer(panel.abline(v=0,col="red",lwd=2))
273 261

  
274 262
### regional plots
275
p1=useOuterStrips(levelplot(value~x*y|variable+trans,data=trd[!trd$variable%in%c("MCD12Q1","MOD35pp"),],asp=1,scales=list(draw=F,rot=0,relation="free"),
263
p1=useOuterStrips(levelplot(value~x*y|variable+trans,data=trd[!trd$variable%in%c("MOD17_unscaled","MOD11_unscaled","MCD12Q1","MOD35pp"),],asp=1,scales=list(draw=F,rot=0,relation="free"),
276 264
                                       at=at,col.regions=cols,maxpixels=7e6,
277
                                       ylab="Latitude",xlab="Longitude"),strip = strip.custom(par.strip.text=list(cex=.75)))+layer(sp.lines(trans,lwd=2))
265
                                       ylab="Latitude",xlab="Longitude"),strip = strip.custom(par.strip.text=list(cex=.7)))+layer(sp.lines(trans,lwd=2))
278 266

  
279 267
p2=useOuterStrips(
280 268
  levelplot(value~x*y|variable+trans,data=trd[trd$variable%in%c("MCD12Q1"),],
......
284 272
              right=list(fun=draw.key(list(columns=1,#title="MCD12Q1 \n IGBP Land \n Cover",
285 273
                           rectangles=list(col=IGBP$col,size=1),
286 274
                           text=list(as.character(IGBP$ID),at=IGBP$ID-.5))))),
287
            ylab="",xlab=" "),strip = strip.custom(par.strip.text=list(cex=.75)),strip.left=F)+layer(sp.lines(trans,lwd=2))
275
            ylab="",xlab=" "),strip = strip.custom(par.strip.text=list(cex=.7)),strip.left=F)+layer(sp.lines(trans,lwd=2))
288 276
p3=useOuterStrips(
289 277
  levelplot(value~x*y|variable+trans,data=trd[trd$variable%in%c("MOD35pp"),],
290 278
            asp=1,scales=list(draw=F,rot=0,relation="free"),colorkey=F,
......
293 281
              right=list(fun=draw.key(list(columns=1,#title="MOD35 \n Processing \n Path",
294 282
                           rectangles=list(col=c("blue","cyan","tan","darkgreen"),size=1),
295 283
                           text=list(c("Water","Coast","Desert","Land")))))),
296
            ylab="",xlab=" "),strip = strip.custom(par.strip.text=list(cex=.75)),strip.left=F)+layer(sp.lines(trans,lwd=2))
284
            ylab="",xlab=" "),strip = strip.custom(par.strip.text=list(cex=.7)),strip.left=F)+layer(sp.lines(trans,lwd=2))
297 285

  
298 286
## transects
299 287
p4=xyplot(value~dist|transect,groups=variable,type=c("smooth","p"),
300 288
       data=transd,panel=function(...,subscripts=subscripts) {
301 289
         td=transd[subscripts,]
302 290
         ## mod09
303
         imod09=td$variable=="MOD09CF"
291
         imod09=td$variable=="C5MOD09CF"
304 292
         panel.xyplot(td$dist[imod09],td$value[imod09],type=c("p","smooth"),span=0.2,subscripts=1:sum(imod09),col="red",pch=16,cex=.25)
305 293
         ## mod35C5
306 294
         imod35=td$variable=="C5MOD35CF"
......
323 311
         panel.xyplot(td$dist[imod11qc],td$value[imod11qc],type=c("p","smooth"),npoints=100,span=qcspan,subscripts=1:sum(imod11qc),col="orange",pch=16,cex=.25)
324 312
         ## land
325 313
         path=td[td$variable=="MOD35pp",]
326
         panel.segments(path$dist,-5,c(path$dist[-1],max(path$dist,na.rm=T)),-5,col=c("blue","cyan","tan","darkgreen")[path$value+1],subscripts=1:nrow(path),lwd=15,type="l")
314
         panel.segments(path$dist,-10,c(path$dist[-1],max(path$dist,na.rm=T)),-10,col=c("blue","cyan","tan","darkgreen")[path$value+1],subscripts=1:nrow(path),lwd=10,type="l")
327 315
         land=td[td$variable=="MCD12Q1",]
328
         panel.segments(land$dist,-10,c(land$dist[-1],max(land$dist,na.rm=T)),-10,col=IGBP$col[land$value+1],subscripts=1:nrow(land),lwd=15,type="l")
316
         panel.segments(land$dist,-20,c(land$dist[-1],max(land$dist,na.rm=T)),-20,col=IGBP$col[land$value+1],subscripts=1:nrow(land),lwd=10,type="l")
329 317
        },subscripts=T,par.settings = list(grid.pars = list(lineend = "butt")),
330 318
       scales=list(
331 319
         x=list(alternating=1,relation="free"),#, lim=c(0,70)),
332
         y=list(at=c(-10,-5,seq(0,100,len=5)),
333
           labels=c("IGBP","MOD35",seq(0,100,len=5)),
334
           lim=c(-15,100))),
320
         y=list(at=c(-18,-10,seq(0,100,len=5)),
321
           labels=c("MCD12Q1 IGBP","MOD35 path",seq(0,100,len=5)),
322
           lim=c(-25,100)),
323
         alternating=F),
335 324
       xlab="Distance Along Transect (km)", ylab="% Missing Data / % of Maximum Value",
336 325
       legend=list(
337 326
         bottom=list(fun=draw.key(list( rep=FALSE,columns=1,title=" ",
338
                      ##                   text=list(c("MOD09 % Cloudy","C5 MOD35 % Cloudy","C6 MOD35 % Cloudy","MOD17 % Missing","MOD17 (scaled)","MOD11 % Missing","MOD11 (scaled)")),
339
                      lines=list(type=c("b","b","b","b","b","l","b","l"),pch=16,cex=.5,lty=c(0,1,1,1,1,5,1,5),col=c("transparent","red","blue","black","darkgreen","darkgreen","orange","orange")),
340
                       text=list(c("MODIS Products","MOD09 % Cloudy","C5 MOD35 % Cloudy","C6 MOD35 % Cloudy","MOD17 % Missing","MOD17 (scaled)","MOD11 % Missing","MOD11 (scaled)")),
327
                      lines=list(type=c("b","b","b","b","b","l","b","l"),pch=16,cex=.5,
328
                        lty=c(0,1,1,1,1,5,1,5),
329
                        col=c("transparent","red","blue","black","darkgreen","darkgreen","orange","orange")),
330
                       text=list(
331
                         c("MODIS Products","C5 MOD09 % Cloudy","C5 MOD35 % Cloudy","C6 MOD35 % Cloudy","MOD17 % Missing","MOD17 (scaled)","MOD11 % Missing","MOD11 (scaled)")),
341 332
                       rectangles=list(border=NA,col=c(NA,"tan","darkgreen")),
342 333
                       text=list(c("C5 MOD35 Processing Path","Desert","Land")),
343
                      rectangles=list(border=NA,col=c(NA,IGBP$col[sort(unique(transd$value[transd$variable=="MCD12Q1"]+1))])),
344
                      text=list(c("MCD12Q1 IGBP Land Cover",IGBP$class[sort(unique(transd$value[transd$variable=="MCD12Q1"]+1))])))))),
345
 strip = strip.custom(par.strip.text=list(cex=.75)))
346
#print(p4)
347

  
348
#trdw=cast(trd,trans+x+y~variable,value="value")
349
#transdw=cast(transd,transect+dist~variable,value="value")
350
#xyplot(MOD11CF~C5MOD35CF|transect,groups=MCD12Q1,data=transdw,pch=16,cex=1,scales=list(relation="free"))
351
#xyplot(MOD17~C5MOD35CF|trans,groups=MCD12Q1,data=trdw,pch=16,cex=1,scales=list(relation="free"))
334
                       rectangles=list(border=NA,col=c(NA,IGBP$col[sort(unique(transd$value[transd$variable=="MCD12Q1"]+1))])),
335
                       text=list(c("MCD12Q1 IGBP Land Cover",IGBP$class[sort(unique(transd$value[transd$variable=="MCD12Q1"]+1))])))))),
336
  strip = strip.custom(par.strip.text=list(cex=.75)))
337
print(p4)
352 338

  
353
#p5=levelplot(value~x*y|variable,data=rondonia,asp=1,scales=list(draw=F,rot=0,relation="free"),colorkey=T)#,
354
#print(p5)
355 339

  
356 340

  
357 341
CairoPDF("output/mod35compare.pdf",width=11,height=7)
358 342
#CairoPNG("output/mod35compare_%d.png",units="in", width=11,height=8.5,pointsize=4000,dpi=1200,antialias="subpixel")
359 343
### Global Comparison
360
print(g1)
361 344
print(g1,position=c(0,.35,1,1),more=T)
362 345
print(g2,position=c(0,0,1,0.415),more=F)
363 346
#print(g3,position=c(0.31,0.06,.42,0.27),more=F)
......
393 376
td[td$transect=="Venezuela",]
394 377

  
395 378

  
396

  
397

  
398
## scatterplot of MOD35 vs MOD09
399
trdl=cast(trans+x+y~variable,value="value",data=trd)
400
xyplot(MOD35C5qc~MOD09qc|trans+as.factor(MOD35pp),pch=16,cex=.2,data=trdl,auto.key=T)+layer(panel.abline(0,1))
401

  
402

  
403
### LANDCOVER
404
levelplot(lulc,col.regions=IGBP$col,scales=list(cex=2),colorkey=list(space="right",at=0:17,labels=list(at=seq(0.5,16.5,by=1),labels=levels(lulc)[[1]]$class,cex=2)),margin=F)
405

  
406
levelplot(mcompare,col.regions=cols,at=at,margin=F,sub="Frequency of MOD35 Clouds in March")
407
#levelplot(dif,col.regions=bgyr(20),margin=F)
408
levelplot(mdiff,col.regions=bgyr(100),at=seq(mdiff@data@min,mdiff@data@max,len=100),margin=F)
409

  
410

  
411
boxplot(as.matrix(subset(dif,subset=1))~forest,varwidth=T,notch=T);abline(h=0)
412

  
413

  
414
levelplot(modprod,main="Missing Data (%) in MOD17 (NPP) and MOD43 (BRDF Reflectance)",
415
          sub="Tile H11v08 (Venezuela)",col.regions=cols,at=at)
416

  
417

  
418

  
419

  
420
levelplot(modprod,main="Missing Data (%) in MOD17 (NPP) and MOD43 (BRDF Reflectance)",
421
          sub="Tile H11v08 (Venezuela)",col.regions=cols,at=at,
422
          xlim=c(-7300000,-6670000),ylim=c(0,600000))
423

  
424
levelplot(v5m,main="Missing Data (%) in MOD17 (NPP) and MOD43 (BRDF Reflectance)",
425
          sub="Tile H11v08 (Venezuela)",col.regions=cols,at=at,
426
          xlim=c(-7200000,-6670000),ylim=c(0,400000),margin=F)
427

  
428

  
429
levelplot(subset(v5v6compare,1:2),main="Proportion Cloudy Days (%) in Collection 5 and 6 MOD35",
430
          sub="Tile H11v08 (Venezuela)",col.regions=cols,at=at,
431
          margin=F)
432

  
433
levelplot(subset(v5v6compare,1:2),main="Proportion Cloudy Days (%) in Collection 5 and 6 MOD35",
434
          sub="Tile H11v08 (Venezuela)",col.regions=cols,at=at,
435
          xlim=c(-7200000,-6670000),ylim=c(0,400000),margin=F)
436

  
437
levelplot(subset(v5v6compare,1:2),main="Proportion Cloudy Days (%) in Collection 5 and 6 MOD35",
438
          sub="Tile H11v08 (Venezuela)",col.regions=cols,at=at,
439
          xlim=c(-7500000,-7200000),ylim=c(700000,1000000),margin=F)
440

  
441

  
442
dev.off()
443

  
444
### smoothing plots
445
## explore smoothed version
446
td=subset(v6,m)
447
## build weight matrix
448
s=3
449
w=matrix(1/(s*s),nrow=s,ncol=s)
450
#w[s-1,s-1]=4/12; w
451
td2=focal(td,w=w)
452
td3=stack(td,td2)
453

  
454
levelplot(td3,col.regions=cols,at=at,margin=F)
455

  
456
dev.off()
457
plot(stack(difm,lulc))
458

  
459
### ROI
460
tile_ll=projectExtent(v6, "+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs")
461

  
462
62,59
463
0,3
464

  
465

  
466

  
467
#### export KML timeseries
379
#### export KML
468 380
library(plotKML)
469
tile="h11v08"
470
file=paste("summary/MOD35_",tile,".nc",sep="")
471
system(paste("gdalwarp -overwrite -multi -ot INT16 -r cubicspline -srcnodata 255 -dstnodata 255 -s_srs '+proj=sinu +lon_0=0 +x_0=0 +y_0=0 +a=6371007.181 +b=6371007.181 +units=m +no_defs' -t_srs 'EPSG:4326' NETCDF:",file,":PCloud  MOD35_",tile,".tif",sep=""))
472

  
473
v6sp=brick(paste("MOD35_",tile,".tif",sep=""))
474
v6sp=readAll(v6sp)
475 381

  
476
## wasn't working with line below, perhaps Z should just be text? not date?
477
v6sp=setZ(v6sp,as.Date(paste("2011-",1:12,"-15",sep="")))
478
names(v6sp)=month.name
382
kml_open("output/modiscloud.kml")
479 383

  
480
kml_open("output/mod35.kml")
384
readAll(mod35c5)
481 385

  
482

  
483
kml_layer.RasterBrick(v6sp,
484
     plot.legend = TRUE, dtime = "", tz = "GMT",
485
    z.lim = c(0,100),colour_scale = get("colour_scale_numeric", envir = plotKML.opts))
386
kml_layer.Raster(mod35c5,
387
     plot.legend = TRUE,raster_name="Collection 5 MOD35 Cloud Frequency",
388
    z.lim = c(0,100),colour_scale = get("colour_scale_numeric", envir = plotKML.opts),
486 389
#    home_url = get("home_url", envir = plotKML.opts),
487 390
#    metadata = NULL, html.table = NULL,
488
#    altitudeMode = "clampToGround", balloon = FALSE,
391
    altitudeMode = "clampToGround", balloon = FALSE
489 392
)
490 393

  
394
system(paste("gdal_translate -of KMLSUPEROVERLAY ",mod35c5@file@name," output/mod35c5.kmz -co FORMAT=JPEG"))
395

  
491 396
logo = "http://static.tumblr.com/t0afs9f/KWTm94tpm/yale_logo.png"
492 397
kml_screen(image.file = logo, position = "UL", sname = "YALE logo",size=c(.1,.1))
493
kml_close("mod35.kml")
494
kml_compress("mod35.kml",files=c(paste(month.name,".png",sep=""),"obj_legend.png"),zip="/usr/bin/zip")
398
kml_close("modiscloud.kml")
399
kml_compress("modiscloud.kml",files=c(paste(month.name,".png",sep=""),"obj_legend.png"),zip="/usr/bin/zip")

Also available in: Unified diff