Project

General

Profile

« Previous | Next » 

Revision da42ba27

Added by Benoit Parmentier almost 12 years ago

GAM CAI raster predictions, modifcations and model running for IBS conference 2013

View differences:

climate/research/oregon/interpolation/GAM_CAI_analysis_raster_prediction_multisampling.R
6 6
#Method is assedsed using constant sampling with variation  of validation sample with different  #
7 7
#hold out proportions.                                                                           #
8 8
#AUTHOR: Benoit Parmentier                                                                       #
9
#DATE: 10/30/2012                                                                                #
9
#DATE: 12/27/2012                                                                                #
10 10
#PROJECT: NCEAS INPLANT: Environment and Organisms --TASK#491--                                  #
11 11
###################################################################################################
12 12

  
......
43 43
#GHCN Database for 1980-2010 for study area (OR) 
44 44
data3<-read.table(paste(path,"/","ghcn_data_TMAXy1980_2010_OR_0602012.txt",sep=""),sep=",", header=TRUE)
45 45

  
46
nmodels<-5   #number of models running
47
y_var_name<-"dailyTmax"
48
climgam=1                                                     #if 1, then GAM is run on the climatology rather than the daily deviation surface...
49
predval<-1
50
prop<-0.3                                                     #Proportion of testing retained for validation   
46
nmodels<-9                #number of models running
47
y_var_name<-"dailyTmax"   #climate variable interpolated
48
climgam<-1                                             #if 1, then GAM is run on the climatology rather than the daily deviation surface...
49
predval<-1                                              #if 1, produce raster prediction
50
prop<-0.3                                               #Proportion of testing retained for validation   
51 51

  
52 52
seed_number<- 100                                             #Seed number for random sampling, if seed_number<0, no seed number is used..
53
#out_prefix<-"_365d_GAM_CAI2_const_10222012_"                  #User defined output prefix
54
#out_prefix<-"_365d_GAM_CAI2_const_all_lstd_10272012"                #User defined output prefix
55
out_prefix<-"_365d_GAM_CAI3_all_10302012"                #User defined output prefix
53
#out_prefix<-"_365d_GAM_CAI2_const_10222012_"                 #User defined output prefix
54
#out_prefix<-"_365d_GAM_CAI2_const_all_lstd_10272012"         #User defined output prefix
55
out_prefix<-"_365d_GAM_CAI4_all_12272012"               #User defined output prefix
56 56

  
57 57
bias_val<-0            #if value 1 then daily training data is used in the bias surface rather than the all monthly stations (added on 07/11/2012)
58 58
bias_prediction<-1     #if value 1 then use GAM for the BIAS prediction otherwise GAM direct reprediction for y_var (daily tmax)
......
60 60
prop_min<-0.3          #if prop_min=prop_max and step=0 then predicitons are done for the number of dates...
61 61
prop_max<-0.3
62 62
step<-0         
63
constant<-0            #if value 1 then use the same samples as date one for the all set of dates
63
constant<-0            #if value 1 then use the same sample used in the first date for interpolation over the set of dates
64 64
#projection used in the interpolation of the study area
65 65
CRS_interp<-"+proj=lcc +lat_1=43 +lat_2=45.5 +lat_0=41.75 +lon_0=-120.5 +x_0=400000 +y_0=0 +ellps=GRS80 +units=m +no_defs";
66 66
CRS_locs_WGS84<-CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #Station coords WGS84
67 67

  
68
#This can be entered as textfile or option later...ok for running now on 12/07/2012
69
list_formulas<-vector("list",nmodels)
70

  
71
list_formulas[[1]] <- as.formula("y_var~ s(ELEV_SRTM)", env=.GlobalEnv)
72
list_formulas[[2]] <- as.formula("y_var~ s(LST)", env=.GlobalEnv)
73
list_formulas[[3]] <- as.formula("y_var~ s(ELEV_SRTM,LST)", env=.GlobalEnv)
74
list_formulas[[4]] <- as.formula("y_var~ s(lat)+s(lon)+s(ELEV_SRTM)", env=.GlobalEnv)
75
list_formulas[[5]] <- as.formula("y_var~ s(lat,lon,ELEV_SRTM)", env=.GlobalEnv)
76
list_formulas[[6]] <- as.formula("y_var~ s(lat,lon)+s(ELEV_SRTM)+s(Northness_w,Eastness_w)+s(LST)", env=.GlobalEnv)
77
list_formulas[[7]] <- as.formula("y_var~ s(lat,lon)+s(ELEV_SRTM)+s(Northness_w,Eastness_w)+s(LST)+s(LC1)", env=.GlobalEnv)
78
list_formulas[[8]] <- as.formula("y_var~ s(lat,lon)+s(ELEV_SRTM)+s(Northness_w,Eastness_w)+s(LST)+s(LC3)", env=.GlobalEnv)
79
list_formulas[[9]] <- as.formula("y_var~ s(x_OR83M,y_OR83M)", env=.GlobalEnv)
80

  
68 81
#source("GAM_CAI_function_multisampling_10252012.R")
69
source("GAM_CAI_function_multisampling_10302012.R")
82
source("GAM_CAI_function_multisampling_12072012.R")
70 83

  
71 84
############ START OF THE SCRIPT ##################
72 85

  
......
315 328
#Start loop here...
316 329

  
317 330
#gam_CAI_mod<-mclapply(1:length(dates), runGAMCAI,mc.preschedule=FALSE,mc.cores = 8) #This is the end bracket from mclapply(...) statement
318
gam_CAI_mod<-mclapply(1:length(ghcn.subsets), runGAMCAI,mc.preschedule=FALSE,mc.cores = 8) #This is the end bracket from mclapply(...) statement
319
#gam_CAI_mod<-mclapply(1:1, runGAMCAI,mc.preschedule=FALSE,mc.cores = 1) #This is the end bracket from mclapply(...) statement
331
gam_CAI_mod<-mclapply(1:length(ghcn.subsets), runGAMCAI,mc.preschedule=FALSE,mc.cores = 9) #This is the end bracket from mclapply(...) statement
332
#gam_CAI_mod<-mclapply(1:2, runGAMCAI,mc.preschedule=FALSE,mc.cores = 2) #This is the end bracket from mclapply(...) statement#
333
#gam_CAI_mod<-mclapply(1:2, runGAMCAI,mc.preschedule=FALSE,mc.cores = 2) #This is the end bracket from mclapply(...) statement
320 334

  
321 335
tb<-gam_CAI_mod[[1]][[3]][0,]  #empty data frame with metric table structure that can be used in rbinding...
322 336
tb_tmp<-gam_CAI_mod #copy
......
341 355
  assign(metric_name,tb_metric)
342 356
  tb_metric_list[[i]]<-tb_metric
343 357
}
358
mod_labels<-rep("mod",nmodels+1)
359
index<-as.character(1:(nmodels+1))
360
mod_labels<-paste(mod_labels,index,sep="")
344 361

  
345 362
tb_diagnostic<-do.call(rbind,tb_metric_list)  #produce a data.frame from the list ...
346 363
tb_diagnostic[["prop"]]<-as.factor(tb_diagnostic[["prop"]])
347 364

  
348 365
t<-melt(tb_diagnostic,
349
        measure=c("mod1","mod2","mod3","mod4", "mod5", "mod6", "mod7", "mod8","mod9"), 
366
        measure=mod_labels, 
350 367
        id=c("dates","metric","prop"),
351 368
        na.rm=F)
352 369
avg_tb<-cast(t,metric+prop~variable,mean)
......
367 384
save(sampling_obj, file= paste(path,"/","results2_CAI_sampling_obj",out_prefix,".RData",sep=""))
368 385
save(gam_CAI_mod,file= paste(path,"/","results2_CAI_Assessment_measure_all",out_prefix,".RData",sep=""))
369 386

  
387
#new combined object used since november 2012
388
gam_CAI_mod_obj<-list(gam_CAI_mod=gam_CAI_mod,sampling_obj=sampling_obj)
389
save(gam_CAI_mod_obj,file= paste(path,"/","results_mod_obj_",out_prefix,".RData",sep=""))
390

  
370 391
#### END OF SCRIPT

Also available in: Unified diff