Project

General

Profile

« Previous | Next » 

Revision daecef39

Added by Benoit Parmentier over 8 years ago

assessment function part3, overall table building

View differences:

climate/research/oregon/interpolation/global_run_scalingup_assessment_part3.R
3 3
#This script uses the worklfow code applied to the globe. Results currently reside on NEX/PLEIADES NASA.
4 4
#Combining tables and figures for individual runs for years and tiles.
5 5
#This script complements part1 and part2 of the accuracy assessment and group tables and outputs 
6
#from run of accuracy assessement generated earlier.
6
#from run of accuracy assessement generated earlier. 
7
#This is used in Stage 8 of master script.
7 8
#Analyses, figures, tables and data are also produced in the script.
8 9
#AUTHOR: Benoit Parmentier 
9 10
#CREATED ON: 03/23/2014  
10
#MODIFIED ON: 04/29/2016            
11
#MODIFIED ON: 07/27/2016            
11 12
#Version: 5
12 13
#PROJECT: Environmental Layers project     
13 14
#COMMENTS: Initial commit, script based on part 2 of assessment, will be modified further for overall assessment 
......
243 244

  
244 245
  ## Step 2: only read what is necessary at this stage...
245 246
  list_tb <- lapply(list_tb_fname,function(x){read.table(x,stringsAsFactors=F,sep=",")})
246
  
247
  list_tb_updated <- mclapply(list_tb,FUN=adding_tile_nb_fun,mc.preschedule=FALSE,mc.cores = num_cores,num_cores_tmp=1)
248

  
249
  
250
  adding_tile_nb_fun <- function(x,num_cores_tmp){
251
    x$tile_id <- factor(x$tile_id, levels=unique(mixedsort(x$tile_id)))#fix level ordering for plotting
252
    #num_cores_tmp <- 1
253
    x$tile_nb <- unlist(mclapply(as.character(x$tile_id),FUN=function(y){strsplit(y,"_")[[1]][2]},mc.preschedule=FALSE,mc.cores = num_cores_tmp))
254
    return(x)
255
  }
256
  #tb$tile_id <- factor(tb$tile_id, levels=unique(mixedsort(tb$tile_id)))#fix level ordering for plotting
257
  #fix level ordering for plotting
258
  #tb$tile_nb <- unlist(mclapply(as.character(tb$tile_id),FUN=function(x){strsplit(x,"_")[[1]][2]},mc.preschedule=FALSE,mc.cores = num_cores))
259
  #unlist(mclapply(as.character(tb$tile_id[1:10]),FUN=function(x){strsplit(x,"_")[[1]][2]},mc.preschedule=FALSE,mc.cores = num_cores))
260 247

  
261 248
  tb <- do.call(rbind,list_tb)
262 249
  list_tb_s <- lapply(list_tb_s_fname,function(x){read.table(x,stringsAsFactors=F,sep=",")})

Also available in: Unified diff