Project

General

Profile

« Previous | Next » 

Revision dbc09684

Added by Benoit Parmentier about 10 years ago

run 9 NEX assessment, 75% overlap 10x30 early modifications

View differences:

climate/research/oregon/interpolation/global_run_scalingup_assessment_part1.R
5 5
#Part 1 create summary tables and inputs for figure in part 2 and part 3.
6 6
#AUTHOR: Benoit Parmentier 
7 7
#CREATED ON: 03/23/2014  
8
#MODIFIED ON: 10/29/2014            
8
#MODIFIED ON: 11/13/2014            
9 9
#Version: 3
10 10
#PROJECT: Environmental Layers project  
11 11
#TO DO:
......
171 171
}
172 172

  
173 173
### Function:
174
  pred_data_info_fun <- function(k,list_data,pred_mod,sampling_dat_info){
174
pred_data_info_fun <- function(k,list_data,pred_mod,sampling_dat_info){
175 175
    #Summarizing input info from sampling and df used in training/testing
176 176
      
177
    data <- list_data[[k]]
178
    sampling_dat <- sampling_dat_info[[k]]
179
    if(data!="try-error"){
180
      n <- nrow(data)
181
      n_mod <- vector("numeric",length(pred_mod))
182
      for(j in 1:length(pred_mod)){
183
        n_mod[j] <- sum(!is.na(data[[pred_mod[j]]]))
184
      }
185
      n <- rep(n,length(pred_mod))
186
      sampling_dat <- sampling_dat[rep(seq_len(nrow(sampling_dat)), each=length(pred_mod)),]
187
      row.names(sampling_dat) <- NULL
188
      df_n <- data.frame(n,n_mod,pred_mod)
189
      df_n <- cbind(df_n,sampling_dat)
190
    }else{        
191
      n <- rep(NA,length(pred_mod))
192
      n_mod <- vector("numeric",length(pred_mod))
193
      n_mod <- rep(NA,length(pred_mod))
194
      df_n <- data.frame(n,n_mod,pred_mod)
195
      sampling_dat <- sampling_dat[rep(seq_len(nrow(sampling_dat)), each=length(pred_mod)),]
196
      row.names(sampling_dat) <- NULL
197
      df_n <- data.frame(n,n_mod,pred_mod)
198
      df_n <- cbind(df_n,sampling_dat)
199
  
177
  data <- list_data[[k]]
178
  sampling_dat <- sampling_dat_info[[k]]
179
  if(data!="try-error"){
180
    n <- nrow(data)
181
    n_mod <- vector("numeric",length(pred_mod))
182
    for(j in 1:length(pred_mod)){
183
      n_mod[j] <- sum(!is.na(data[[pred_mod[j]]]))
200 184
    }
201
    
202
    return(df_n)
203
  }
185
    n <- rep(n,length(pred_mod))
186
    sampling_dat <- sampling_dat[rep(seq_len(nrow(sampling_dat)), each=length(pred_mod)),]
187
    row.names(sampling_dat) <- NULL
188
    df_n <- data.frame(n,n_mod,pred_mod)
189
    df_n <- cbind(df_n,sampling_dat)
190
  }else{        
191
    n <- rep(NA,length(pred_mod))
192
    n_mod <- vector("numeric",length(pred_mod))
193
    n_mod <- rep(NA,length(pred_mod))
194
    df_n <- data.frame(n,n_mod,pred_mod)
195
    sampling_dat <- sampling_dat[rep(seq_len(nrow(sampling_dat)), each=length(pred_mod)),]
196
    row.names(sampling_dat) <- NULL
197
    df_n <- data.frame(n,n_mod,pred_mod)
198
    df_n <- cbind(df_n,sampling_dat)
199
  
200
  }  
201
  return(df_n)
202
}
204 203

  
205 204
extract_daily_training_testing_info <- function(i,list_param){
206 205
  #This function extracts training and testing information from the raster object produced for each tile
......
457 456
##############################
458 457
#### Parameters and constants  
459 458

  
460
#in_dir1 <- "/data/project/layers/commons/NEX_data/test_run1_03232014/output" #On Atlas
461
#in_dir1 <- "/nobackupp4/aguzman4/climateLayers/output20Deg2/"
462
#in_dir1 <-"/nobackupp4/aguzman4/climateLayers/output20Deg_75overlap/reg4"
463
in_dir1 <- "/nobackupp4/aguzman4/climateLayers/output1000x3000_km/"
459
#in_dir1 <- "/nobackupp4/aguzman4/climateLayers/output1000x3000_km/"
460
in_dir1 <- "/nobackupp6/aguzman4/climateLayers/output1000x3000_km/"
464 461
#/nobackupp4/aguzman4/climateLayers/output10Deg/reg1/finished.txt
465 462
in_dir_list <- list.dirs(path=in_dir1,recursive=FALSE) #get the list regions processed for this run
463
in_dir_list <- in_dir_list[c(3,4)] #get the list regions processed for this run
464

  
466 465
#if(basename(in_dir_list)[[1]]=="reg?") #add later
467 466
in_dir_list_all  <- lapply(in_dir_list,function(x){list.dirs(path=x,recursive=F)})
468 467
#in_dir_list_all <- in_dir_list
......
486 485
  
487 486
#in_dir_list <- file.path(in_dir1,read.table(file.path(in_dir1,"processed.txt"))$V1)
488 487
#in_dir_list <- as.list(in_dir_list[-1])
489
#in_dir_list <- in_dir_list[grep("bak",basename(basename(in_dir_list)),invert=TRUE)] #the first one is the in_dir1
488
in_dir_list <- in_dir_list[grep("bak",basename(basename(in_dir_list)),invert=TRUE)] #the first one is the in_dir1
490 489
#in_dir_shp <- in_dir_list[grep("shapefiles",basename(in_dir_list),invert=FALSE)] #select directory with shapefiles...
490
in_dir_shp <- in_dir_shp[grep("subset_bak",basename(dirname(in_dir_shp)),invert=TRUE)] #the first one is the in_dir1
491 491

  
492 492
#in_dir_shp <- "/nobackupp4/aguzman4/climateLayers/output10Deg/reg1/subset/shapefiles/"
493 493
#in_dir_shp <- "/nobackupp4/aguzman4/climateLayers/output20Deg/reg2/subset/shapefiles"
......
498 498
# the last directory contains shapefiles 
499 499
y_var_name <- "dailyTmax"
500 500
interpolation_method <- c("gam_CAI")
501
out_prefix<-"run8_global_analyses_10292014"
501
out_prefix<-"run9_global_analyses_11122014"
502 502

  
503 503
#out_dir<-"/data/project/layers/commons/NEX_data/" #On NCEAS Atlas
504 504
out_dir <- "/nobackup/bparmen1/" #on NEX

Also available in: Unified diff