Revision defe53e5
Added by Benoit Parmentier over 12 years ago
climate/research/oregon/interpolation/gwr_reg.R | ||
---|---|---|
8 | 8 |
library(spdep) |
9 | 9 |
library(rgdal) |
10 | 10 |
library(spgwr) |
11 |
|
|
11 |
library(gpclib) |
|
12 |
library(PBSmapping) |
|
13 |
library(maptools) |
|
14 |
library(gstat) |
|
12 | 15 |
###Parameters and arguments |
13 | 16 |
|
14 | 17 |
infile1<-"ghcn_or_tmax_b_03032012_OR83M.shp" |
... | ... | |
17 | 20 |
#infile2<-"dates_interpolation_03012012.txt" # list of 10 dates for the regression |
18 | 21 |
infile2<-"dates_interpolation_03052012.txt" |
19 | 22 |
prop<-0.3 |
20 |
out_prefix<-"_03132012_0" |
|
23 |
out_prefix<-"_03272012_Res_fit" |
|
24 |
|
|
25 |
###Reading the shapefile and raster image from the local directory |
|
21 | 26 |
|
22 |
###Reading the shapefile from the local directory
|
|
27 |
mean_LST<- readGDAL("mean_day244_rescaled.rst") #This reads the whole raster in memory and provide a grid for kriging
|
|
23 | 28 |
ghcn<-readOGR(".", "ghcn_or_tmax_b_03032012_OR83M") |
29 |
proj4string(ghcn) #This retrieves the coordinate system for the SDF |
|
30 |
CRS_ghcn<-proj4string(ghcn) #this can be assigned to mean_LST!!! |
|
31 |
proj4string(mean_LST)<-CRS_ghcn #Assigning coordinates information |
|
32 |
|
|
33 |
# Creating state outline from county |
|
34 |
|
|
35 |
orcnty<-readOGR(".", "orcnty24_OR83M") |
|
36 |
proj4string(orcnty) #This retrieves the coordinate system for the SDF |
|
37 |
lps <-getSpPPolygonsLabptSlots(orcnty) #Getting centroids county labels |
|
38 |
IDOneBin <- cut(lps[,1], range(lps[,1]), include.lowest=TRUE) #Creating one bin var |
|
39 |
gpclibPermit() #Set the gpclib to True to allow union |
|
40 |
OR_state <- unionSpatialPolygons(orcnty ,IDOneBin) #Dissolve based on bin var |
|
41 |
|
|
42 |
# Adding variables for the regression |
|
24 | 43 |
|
25 | 44 |
ghcn$Northness<- cos(ghcn$ASPECT) #Adding a variable to the dataframe |
26 | 45 |
ghcn$Eastness <- sin(ghcn$ASPECT) #adding variable to the dataframe. |
... | ... | |
35 | 54 |
results <- matrix(1,length(dates),3) #This is a matrix containing the diagnostic measures from the GAM models. |
36 | 55 |
|
37 | 56 |
#Screening for bad values |
38 |
#tmax~ lon + lat + ELEV_SRTM + Eastness + Northness + DISTOC |
|
39 | 57 |
#tmax range: min max) |
40 | 58 |
ghcn_test<-subset(ghcn,ghcn$tmax>-150 & ghcn$tmax<400) |
41 | 59 |
ghcn_test2<-subset(ghcn_test,ghcn_test$ELEV_SRTM>0) |
42 | 60 |
ghcn<-ghcn_test2 |
43 |
#lon range |
|
44 |
#lat range |
|
45 |
#ELEV_SRTM |
|
46 |
#Eastness |
|
47 |
#Northness |
|
48 | 61 |
|
49 | 62 |
#ghcn.subsets <-lapply(dates, function(d) subset(ghcn, date==as.numeric(d)))#this creates a list of 10 subsets data |
50 | 63 |
ghcn.subsets <-lapply(dates, function(d) subset(ghcn, ghcn$date==as.numeric(d))) |
51 | 64 |
|
52 |
#ghcn.subsets <-subset(ghcn,ghcn$date=="20100101") |
|
53 |
#summary(lm(y~x,data=df,weights=(df$wght1)^(3/4)) |
|
54 |
#ggwr.sel: find the bandwith from the data |
|
55 |
|
|
56 |
|
|
57 |
|
|
58 | 65 |
###Regression part 1: Creating a validation dataset by creating training and testing datasets |
59 | 66 |
for(i in 1:length(dates)){ # start of the for loop #1 |
60 | 67 |
|
... | ... | |
86 | 93 |
results[i,1]<- dates[i] #storing the interpolation dates in the first column |
87 | 94 |
results[i,2]<- ns #number of stations used in the training stage |
88 | 95 |
results[i,3]<- RMSE_f |
96 |
|
|
97 |
#Kriging residuals!! |
|
98 |
X11() |
|
99 |
hscat(residuals~1,data_s,(0:9)*20000) # 9 lag classes with 20,000m width |
|
100 |
v<-variogram(residuals~1, data_s) |
|
101 |
plot(v) |
|
102 |
tryCatch(v.fit<-fit.variogram(v,vgm(1,"Sph", 150000,1)),error=function()next) |
|
103 |
gwr_res_krige<-krige(residuals~1, data_s,mean_LST, v.fit)#mean_LST provides the data grid/raster image for the kriging locations. |
|
104 |
|
|
105 |
# GWR visualization of Residuals fit over space |
|
106 |
grays = gray.colors(5,0.45, 0.95) |
|
107 |
image(gwr_res_krige,col=grays) #needs to change to have a bipolar palette !!! |
|
108 |
|
|
109 |
#image(mean_LST, col=grays,breaks = c(185,245,255,275,315,325)) |
|
110 |
|
|
111 |
plot(OR_state, axes = TRUE, add=TRUE) |
|
112 |
plot(data_s, pch=1, col="red", cex= abs(data_s$residuals)/10, add=TRUE) #Taking the absolute values because residuals are |
|
113 |
LegVals<- c(0,20,40,80,110) |
|
114 |
legend("topleft", legend=LegVals,pch=1,col="red",pt.cex=LegVals/10,bty="n",title= "residuals") |
|
115 |
legend("left", legend=c("275-285","285-295","295-305", "305-315","315-325"),fill=grays, bty="n", title= "LST mean DOY=244") |
|
116 |
|
|
117 |
savePlot(paste(data_name,out_prefix,".png", sep=""), type="png") |
|
118 |
dev.off() |
|
89 | 119 |
} |
90 | 120 |
|
91 | 121 |
## Plotting and saving diagnostic measures |
... | ... | |
99 | 129 |
|
100 | 130 |
write.csv(results_table, file= paste(path,"/","results_GWR_Assessment",out_prefix,".txt",sep="")) |
101 | 131 |
|
132 |
|
|
102 | 133 |
# End of script########## |
103 | 134 |
|
104 | 135 |
# ############################### |
Also available in: Unified diff
GWR assessment by visualizing residuals using kriging