Project

General

Profile

« Previous | Next » 

Revision df6c8439

Added by Benoit Parmentier almost 9 years ago

assessment of global run adding extraction of stations information for training and testing

View differences:

climate/research/oregon/interpolation/global_run_scalingup_assessment_part1.R
330 330

  
331 331
#Insert here...compute input and predicted ranges to spot potential errors?
332 332

  
333
### Make this part a function...this is repetitive
333 334
##### SPDF of Monhtly Station info
334 335
#load data_month for specific tiles
335
# data_month <- extract_from_list_obj(robj1$clim_method_mod_obj,"data_month")
336
# names(data_month) #this contains LST means (mm_1, mm_2 etc.) as well as TMax and other info
337
# 
338
# data_month_s_list <- mclapply(list_raster_obj_files,FUN=function(x){try(x<-load_obj(x));try(x$validation_mod_month_obj[["data_s"]])},mc.preschedule=FALSE,mc.cores = 6)                           
339
# 
340
# names(data_month_s_list) <- list_names_tile_id
341
# 
342
# data_month_tmp <- remove_from_list_fun(data_month_s_list)$list
343
# #df_tile_processed$metrics_v <- remove_from_list_fun(data_month_s_list)$valid
344
# 
345
# tile_id <- lapply(1:length(data_month_tmp),
346
#                   FUN=function(i,x){rep(names(x)[i],nrow(x[[i]]))},x=data_month_tmp)
347
# data_month_NAM <- do.call(rbind.fill,data_month_list) #combined data_month for "NAM" North America
348
# data_month_NAM$tile_id <- unlist(tile_id)
349
# 
350
# write.table((data_month_NAM),
351
#             file=file.path(out_dir,paste("data_month_s_NAM","_",out_prefix,".txt",sep="")),sep=",")
352

  
353
##### SPDF of daily Station info
336
#10.45pm
337
#data_month <- extract_from_list_obj(robj1$clim_method_mod_obj,"data_month")
338
#names(data_month) #this contains LST means (mm_1, mm_2 etc.) as well as TMax and other info
339

  
340
#data_month_s_list <- mclapply(list_raster_obj_files,FUN=function(x){try(x<-load_obj(x));try(x$validation_mod_month_obj[["data_s"]])},mc.preschedule=FALSE,mc.cores = 6)                           
341
data_month_s_list <- mclapply(list_raster_obj_files,FUN=function(x){try(x<-load_obj(x));try(extract_from_list_obj(x$validation_mod_month_obj,"data_s"))},mc.preschedule=FALSE,mc.cores = 6)                           
342
#test <- mclapply(list_raster_obj_files[1:6],FUN=function(x){try(x<-load_obj(x));try(extract_from_list_obj(x$validation_mod_month_obj,"data_s"))},mc.preschedule=FALSE,mc.cores = 6)                           
343

  
344
names(data_month_s_list) <- list_names_tile_id
345

  
346
data_month_tmp <- remove_from_list_fun(data_month_s_list)$list
347
#df_tile_processed$metrics_v <- remove_from_list_fun(data_month_s_list)$valid
348

  
349
tile_id <- lapply(1:length(data_month_tmp),
350
                  FUN=function(i,x){rep(names(x)[i],nrow(x[[i]]))},x=data_month_tmp)
351
data_month_NAM <- do.call(rbind.fill,data_month_tmp) #combined data_month for "NAM" North America
352
data_month_NAM$tile_id <- unlist(tile_id)
353

  
354
write.table((data_month_NAM),
355
            file=file.path(out_dir,paste("data_month_s_NAM","_",out_prefix,".txt",sep="")),sep=",")
356

  
357
#Get validation data?? Find other object from within the dir 
358
#Som region don't have validation data at monthly time scale.
359

  
360
#### SPDF of daily Station info
354 361
#load data_month for specific tiles
355
# data_month <- extract_from_list_obj(robj1$clim_method_mod_obj,"data_month")
356
# names(data_month) #this contains LST means (mm_1, mm_2 etc.) as well as TMax and other info
357
# 
358
#data_day_s_list <- mclapply(list_raster_obj_files,FUN=function(x){try(x<-load_obj(x));try(x$validation_mod_obj[["data_s"]])},mc.preschedule=FALSE,mc.cores = num_cores)    
359
#data_day_v_list <- mclapply(list_raster_obj_files,FUN=function(x){try(x<-load_obj(x));try(x$validation_mod_obj[["data_v"]])},mc.preschedule=FALSE,mc.cores = num_cores)    
360

  
361
#data_day_s_list <- mclapply(list_raster_obj_files[1:6],FUN=function(x){try(x<-load_obj(x));try(x$validation_mod_obj[["data_s"]])},mc.preschedule=FALSE,mc.cores = num_cores)    
362

  
363
#data_day_v_list <- mclapply(list_raster_obj_files,FUN=function(x){try(x<-load_obj(x));try(extract_list_from_list_obj(x$validation_mod_obj,"data_v"))},mc.preschedule=FALSE,mc.cores = num_cores)    
364
#data_day_s_list <- mclapply(list_raster_obj_files,FUN=function(x){try(x<-load_obj(x));try(extract_list_from_list_obj(x$validation_mod_obj,"data_s"))},mc.preschedule=FALSE,mc.cores = num_cores)    
365

  
366
#list_data_day_v <- try(extract_list_from_list_obj(raster_obj$validation_mod_obj,"data_v"))
367
#list_data_day_s <- try(extract_list_from_list_obj(raster_obj$validation_mod_obj,"data_s"))
368
#sampling_dat_day <- extract_list_from_list_obj(raster_obj$method_mod_obj,"daily_dev_sampling_dat")
369
#debug(pred_data_info_fun)
370
#list_pred_data_day_s_info <- pred_data_info_fun(1,list_data=list_data_day_s,pred_mod=pred_mod,sampling_dat_info=sampling_dat_day)
371
#list_pred_data_day_s_info <- lapply(1:length(sampling_dat_day),FUN=pred_data_info_fun,
372
#           list_data=list_data_day_s,pred_mod=pred_mod,sampling_dat_info=sampling_dat_day)
373
#list_pred_data_day_v_info <- lapply(1:length(sampling_dat_day),FUN=pred_data_info_fun,
374
#           list_data=list_data_day_v,pred_mod=pred_mod,sampling_dat_info=sampling_dat_day)
375
#pred_data_day_s_info <- do.call(rbind,list_pred_data_day_s_info)
376
#pred_data_day_v_info <- do.call(rbind,list_pred_data_day_v_info)
377
#pred_data_day_s_info$training <- rep(1,nrow(pred_data_day_s_info)) 
378
#pred_data_day_v_info$training <- rep(0,nrow(pred_data_day_v_info)) 
379
#pred_data_day_info <-rbind(pred_data_day_v_info,pred_data_day_s_info)
380

  
381
# 
382
#names(data_month_s_list) <- list_names_tile_id
383
# 
384
# data_month_tmp <- remove_from_list_fun(data_month_s_list)$list
385
# #df_tile_processed$metrics_v <- remove_from_list_fun(data_month_s_list)$valid
386
# 
387
# tile_id <- lapply(1:length(data_month_tmp),
388
#                   FUN=function(i,x){rep(names(x)[i],nrow(x[[i]]))},x=data_month_tmp)
389
# data_month_NAM <- do.call(rbind.fill,data_month_list) #combined data_month for "NAM" North America
390
# data_month_NAM$tile_id <- unlist(tile_id)
391
# 
392
# write.table((data_month_NAM),
393
#             file=file.path(out_dir,paste("data_month_s_NAM","_",out_prefix,".txt",sep="")),sep=",")
394

  
395
##### SPDF of Daily Station info
362
#data_month <- extract_from_list_obj(robj1$clim_method_mod_obj,"data_month")
363
#names(data_month) #this contains LST means (mm_1, mm_2 etc.) as well as TMax and other info
364

  
365
data_day_s_list <- mclapply(list_raster_obj_files,FUN=function(x){try(x<-load_obj(x));try(extract_from_list_obj(x$validation_mod_obj,"data_s"))},mc.preschedule=FALSE,mc.cores = num_cores)    
366
data_day_v_list <- mclapply(list_raster_obj_files,FUN=function(x){try(x<-load_obj(x));try(extract_from_list_obj(x$validation_mod_obj,"data_v"))},mc.preschedule=FALSE,mc.cores = num_cores)    
367

  
368
names(data_day_s_list) <- list_names_tile_id
369
names(data_day_v_list) <- list_names_tile_id
370

  
371
data_day_s_tmp <- remove_from_list_fun(data_day_s_list)$list
372
#df_tile_processed$metrics_v <- remove_from_list_fun(data_month_s_list)$valid
373

  
374
tile_id <- lapply(1:length(data_day_s_tmp),
375
                  FUN=function(i,x){rep(names(x)[i],nrow(x[[i]]))},x=data_day_s_tmp)
376
data_day_s_NAM <- do.call(rbind.fill,data_day_tmp) #combined data_month for "NAM" North America
377
data_day_s_NAM$tile_id <- unlist(tile_id)
378

  
379
write.table((data_day_s_NAM),
380
            file=file.path(out_dir,paste("data_day_s_NAM","_",out_prefix,".txt",sep="")),sep=",")
396 381

  
397 382

  
398 383
######################################################

Also available in: Unified diff