Project

General

Profile

« Previous | Next » 

Revision e0928996

Added by Benoit Parmentier over 8 years ago

analyses of extremes, fixing figures for assessment part 5

View differences:

climate/research/oregon/interpolation/global_run_scalingup_assessment_part5.R
363 363
  df_pts <- as.data.frame(do.call(rbind,tmp_pts))
364 364
  #df_pts <- cbind(df_pts,df_tiles_reg)
365 365
  df_tiles_reg <- cbind(df_pts,df_tiles_reg) #(shp_files=(list_shp_reg_files),tile_id=list_tile_id)
366
  df_tiles_reg$id <- unlist(lapply(strsplit(df_tiles_reg$tile_id,"_"),FUN=function(x){x[2]}))
366
  df_tiles_reg$id <- as.numeric(unlist(lapply(strsplit(df_tiles_reg$tile_id,"_"),FUN=function(x){x[2]})))
367 367
  
368
    #plot info: with labels
368
  coordinates(df_tiles_reg)<- cbind(df_tiles_reg$x,df_tiles_reg$y)
369
  
370
  #plot info: with labels
369 371
  res_pix <-1200
370 372
  col_mfrow <- 1 
371 373
  row_mfrow <- 1
......
397 399
  
398 400
  dev.off()
399 401
  
402
  res_pix <-1200
403
  col_mfrow <- 1 
404
  row_mfrow <- 1
400 405
  
406
  png(filename=paste("Figure1b_tile_processed_centroids_region_",region_name,"_",out_suffix,".png",sep=""),
407
      width=col_mfrow*res_pix,height=row_mfrow*res_pix)
408
  
409
  #plot(reg_layer)
410
  #Add polygon tiles...
411
  #title(paste("Tiles ", tile_size,region_name,sep=""))
412
  #plot(df_tiles_reg,add=T,pch=2)
413
  #label_id <- df_tiles_reg$id
414
  #text(coordinates(df_tiles_reg)[1],coordinates(df_tiles_reg)[2],labels=i,cex=1.3,font=2,col=c("red"),family="HersheySerif")
415

  
416
  p_shp <- spplot(reg_layer,"ISO3" ,col.regions=NA, col="black") #ok problem solved!!
417
  #title("(a) Mean for 1 January")
418
  df_tiles_reg$lab <- 1
419
  sl1 <- list('sp.points',df_tiles_reg, pch=19, cex=.8, col='red')
420
  sl2 <- list('sp.pointLabel', df_tiles_reg, label=list_id,
421
            cex=2.4, font=2,col='red',col.regions="red",
422
            fontfamily='Palatino') #Add labels at centroids
423
 
424
  p <- spplot(df_tiles_reg,"id",main=paste("Tile id processed",sep=""),sp.layout=list(sl1, sl2))
425
  #spplot(meuse.grid["dist"], col.regions=myCols, sp.layout=list(sl1, sl2)
426
  #p <- spplot(df_tiles_reg,"lab",main=paste("Tile id processed",sep=""))
427
  p1 <- p+p_shp
428
  try(print(p1)) #error raised if number of missing values below a threshold does not exist
429
  #ltext(coordinates(df_tiles_reg)[,1],coordinates(df_tiles_reg)[,2],labels=list_tile_id)
430

  
431
  #list_id <- df_tiles_reg$id
432
  dev.off()
433

  
401 434
  list_outfiles[[counter_fig+1]] <- paste("Figure1_tile_processed_region_",region_name,"_",out_suffix,".png",sep="")
402 435
  counter_fig <- counter_fig+1
403 436
  #this will be changed to be added to data.frame on the fly
......
420 453
    
421 454
    tb_tmp <- try(subset(tb_subset,tb_subset[[metric_name]]>threshold_val[i]))
422 455
    hist(tb_tmp$rmse)
423
    
456
    fig_filename1 <-paste("Figure2a_barplot_extremes_val_centroids_tile_",model_name[j],"_",threshold_val[i],
457
                       "_",out_suffix,".png",sep="")
458
    fig_filename2 <- paste("Figure2b_ac_metrics_extremes_map_centroids_tile_",model_name[j],"_",threshold_val[i],
459
                       "_",out_suffix,".png",sep="")
460
    list_outfiles[[counter_fig+i]] <- fig_filename1
461
    list_outfiles[[counter_fig+i]] <- fig_filename2
462
        
424 463
    if(nrow(tb_subset)>0){
425 464
      
426 465
      df_extremes <- as.data.frame(table(tb_tmp$tile_id))
......
447 486
      #barplot(table(tb_subset$tile_id),main=paste("Extremes threshold val for ",threshold_val[i],sep=""),
448 487
       #        ylab="frequency",xlab="tile_id",las=2)
449 488
      dev.off()
450
      list_outfiles[[counter_fig+i]] <- fig_filename
451

  
452 489

  
453 490
      #test<-(subset(tb,tb$tile_id==unique(tb_subset$tile_id)))
454 491
      #df_ac_mod <- arrange(as.data.frame(ac_mod),desc(rmse))[,c("pred_mod","rmse","mae","tile_id")]
......
480 517

  
481 518
    }
482 519

  
483

  
484 520
    #list_outfiles[[counter_fig+i]] <- fig_filename
485 521
  }
486 522
  counter_fig <- counter_fig+length(threshold_missing_day) #currently 4 days...
......
490 526
  r20 <-c("figure_7","Number of missing days threshold3 map at centroids","mod1",metric_name,region_name,year_predicted,list_outfiles[[20]])
491 527
  r21 <-c("figure_7","Number of missing days threshold4 map at centroids","mod1",metric_name,region_name,year_predicted,list_outfiles[[21]])  
492 528

  
529
  ##### Figure 3 ###
530
  
531
  test<- subset(tb_subset,tb_subset$tile_id=="tile_14")
532
  test2 <- aggregate(rmse~date,test,min)
533
  idx <- test$date #transform this format...
534
  d_z <- zoo(test,idx) #make a time series ...
535
  #add horizontal line...
536

  
537
  plot(test$rmse,type="b")
538
  unique(test$year_predicted)
539
   unique(tb$year_predicted)
540
   
493 541
  ######################################################
494 542
  ##### Prepare objet to return ####
495 543

  

Also available in: Unified diff