1 |
8ff00cae
|
Rick Reeves
|
|
2 |
|
|
# DEMBdyFixExpDecay - Implements Exponential Decay method to 'blend' DEM boundary edges
|
3 |
|
|
#
|
4 |
|
|
# General form: decayFactor = e(-(d * DKc))
|
5 |
|
|
# where d = distance interval from origin (in this case, an image row index)
|
6 |
|
|
# DKc = empirically derived constant
|
7 |
|
|
#
|
8 |
|
|
#
|
9 |
|
|
# Inputs:
|
10 |
|
|
# 1) Blended Aster/SRTM DEM mosaic image.
|
11 |
|
|
# 2) 'SRTM-Only' subimage corresponding to the NORTHernmost part (adjacent to the 60 degree Lat
|
12 |
|
|
# boundary) of the SRTM component of the mosaic.
|
13 |
|
|
# 3) 'Aster-Only' subimage corresponding to the SOUTHernmost part (adjacent to the 60 degree Lat
|
14 |
|
|
# boundary) of the ASTER component of the mosaic.
|
15 |
|
|
# 4) Other parameters, as they are needed
|
16 |
|
|
#
|
17 |
|
|
# To run:
|
18 |
|
|
|
19 |
|
|
|
20 |
|
|
# 2) > source("DEMBdyFixExpDecay.r")
|
21 |
|
|
# 3) > DEMBdyFixExpDecay()
|
22 |
|
|
#
|
23 |
|
|
# Author: Rick Reeves, NCEAS
|
24 |
|
|
# June, 2011
|
25 |
|
|
|
26 |
|
|
##############################################################################################
|
27 |
|
|
DEMBdyFixExpDecay <- function()
|
28 |
|
|
{
|
29 |
|
|
require(raster)
|
30 |
|
|
require(rgdal)
|
31 |
|
|
|
32 |
|
|
# Read the mosaic image and component sub-images:
|
33 |
|
|
# - Aster/SRTM mosaic image (with boundary edge to be fixed)
|
34 |
|
|
# - 'Aster-only' subimage adjacent to Southern edge of 60 degree bounls -s dary,
|
35 |
|
|
# sampled into a grid with same extent and spatial resolution as image mosaic
|
36 |
|
|
# - 'Aster-only' subimage adjacent to Northern edge of 60 degree boundary,
|
37 |
|
|
# sampled into a grid with same extent and spatial resolution as image mosaic
|
38 |
|
|
|
39 |
|
|
inMosaic <- raster("./AsterSrtmBoth3ArcSecSub.tif")
|
40 |
|
|
|
41 |
|
|
# Use these objects to get the extents of the subsets within the mosaic
|
42 |
|
|
|
43 |
|
|
inAsterNorth <- raster("./AsterBdyTestAbove60Sub.tif")
|
44 |
|
|
inAsterSouth <- raster("./AsterBdyTestBelow60Sub.tif")
|
45 |
|
|
|
46 |
|
|
# Better, read them into a rasterStack
|
47 |
|
|
|
48 |
|
|
mosaicLayers <- stack("./AsterSRTMBothTestSub.tif",
|
49 |
|
|
"./AsterBdyTestFGAbove60Sub.tif",
|
50 |
|
|
"./AsterBdyTestFGBelow60Sub.tif")
|
51 |
|
|
#
|
52 |
|
|
# Create copy of input raster that we will use to create a 'fixed boundary' iamge
|
53 |
|
|
# Even SIMPLER, according to raster documentation
|
54 |
|
|
#
|
55 |
|
|
outMosaic <- raster(mosaicLayers[[1]])
|
56 |
|
|
|
57 |
|
|
sFixedRasterFile <- "TestOutputRasterBdyFix.tif"
|
58 |
|
|
|
59 |
|
|
# First, get the extent of the 'below 60' sub image in the (big) input raster
|
60 |
|
|
|
61 |
|
|
northAsterEx <- extent(inAsterNorth)
|
62 |
|
|
southAsterEx <- extent(inAsterSouth)
|
63 |
|
|
|
64 |
|
|
# Get the values from the mosaic for this extent
|
65 |
|
|
|
66 |
|
|
southCellsOfInterest <- cellsFromExtent(mosaicLayers[[1]],southAsterEx)
|
67 |
|
|
northCellsOfInterest <- cellsFromExtent(mosaicLayers[[1]],northAsterEx)
|
68 |
|
|
|
69 |
|
|
# Within the large input raster, we need the index of the first row of the 'Below 60 Aster' subimage.
|
70 |
|
|
# Our plan: to replace this portion of the input mosaic with a linear combination of the original
|
71 |
|
|
# input mosaic COPY (outMosaic) and the 'below 60' raster.
|
72 |
|
|
|
73 |
|
|
firstNorthSubImgRow <- rowFromCell(mosaicLayers[[1]],northCellsOfInterest[1])
|
74 |
|
|
lastNorthSubImgRow <- rowFromCell(mosaicLayers[[1]],northCellsOfInterest[(length(northCellsOfInterest) - 1)])
|
75 |
|
|
northNrowsToProcess <- nrow(inAsterNorth)
|
76 |
|
|
|
77 |
|
|
firstSouthSubImgRow <- rowFromCell(mosaicLayers[[1]],southCellsOfInterest[1])
|
78 |
|
|
lastSouthSubImgRow <- rowFromCell(mosaicLayers[[1]],southCellsOfInterest[(length(southCellsOfInterest) - 1)])
|
79 |
|
|
southNrowsToProcess <- nrow(inAsterSouth)
|
80 |
|
|
|
81 |
|
|
# create the output raster by copying the input file with 'block copy'
|
82 |
|
|
|
83 |
|
|
message("Create output (fixed) mosaic")
|
84 |
|
|
#browser()
|
85 |
|
|
bs <- blockSize(mosaicLayers[[1]])
|
86 |
|
|
outMosaic <- writeStart(outMosaic,sFixedRasterFile, datatype="INT2S", format="GTiff",overwrite=TRUE)
|
87 |
|
|
for (iCtr in 1 : bs$n)
|
88 |
|
|
{
|
89 |
|
|
mosaicVals <- getValues(mosaicLayers[[1]],row=bs$row[iCtr],nrows=bs$nrows[iCtr])
|
90 |
|
|
writeValues(outMosaic,mosaicVals,bs$row[iCtr])
|
91 |
|
|
message(sprintf(".....processed input mosaic block %d",iCtr))
|
92 |
|
|
}
|
93 |
|
|
outMosaic <- writeStop(outMosaic)
|
94 |
|
|
message("Input mosaic copied to output raster: now, process boundary")
|
95 |
|
|
#browser()
|
96 |
|
|
|
97 |
|
|
# now, we SHOULD be able to modify outMosaic with new 'column values'.
|
98 |
|
|
|
99 |
|
|
# note: last north image and first south image rows are the same.
|
100 |
|
|
|
101 |
|
|
northBorderEdgeRow <- lastNorthSubImgRow
|
102 |
|
|
southBorderEdgeRow <- firstSouthSubImgRow + 1
|
103 |
|
|
|
104 |
|
|
# The border 'edge' row is one row below the top of the south sub image
|
105 |
|
|
|
106 |
|
|
southBrdrRowVals <- getValues(outMosaic,southBorderEdgeRow,1)
|
107 |
|
|
northBrdrRowVals <- getValues(outMosaic,northBorderEdgeRow,1)
|
108 |
|
|
|
109 |
|
|
brdrRowEdgeDelta <- southBrdrRowVals - northBrdrRowVals
|
110 |
|
|
|
111 |
|
|
# Process the mosaic 'column-by-column'
|
112 |
|
|
# For each column, extract the LAST 'numBlendRows cells adjacent to the bottomi
|
113 |
|
|
# (southernmost) edge of the ASTER component, next to the SRTM border.
|
114 |
|
|
# Then, moving 'north' along the colum of values, add the current colunn's 'ledge'
|
115 |
|
|
# offset, attenuated by the exponential decay factor for that row.
|
116 |
|
|
# Thus, the SRTM/ASTER 'ledge' is attenuated, the impact is greatest at the boundary,
|
117 |
|
|
# least at the threshold, when the decay factor (empirically determined) goes to zero.
|
118 |
|
|
#
|
119 |
|
|
# Add Exponential Decay constant: empirically selected (try a few, ee if you like result
|
120 |
|
|
# Maybe plot it, see how many rows it takes for the 'effect' of SRTM goes to zero.
|
121 |
|
|
|
122 |
|
|
dKc <- .045 # empirically determined constant, so that exp - 1 decay goes to zero in the desired number of image rows.
|
123 |
|
|
numBlendRows <- 60
|
124 |
|
|
begBlendRow <- (northBorderEdgeRow - numBlendRows) + 1
|
125 |
|
|
# srows <- seq(southBorderEdgeRow,((southBorderEdgeRow + numBlendRows) - 1))
|
126 |
|
|
srows <- seq((begBlendRow),northBorderEdgeRow)
|
127 |
|
|
#
|
128 |
|
|
for (curMosCol in 1 : ncol(mosaicLayers[[1]]))
|
129 |
|
|
{
|
130 |
|
|
message(sprintf("transforming cur col: %d",curMosCol))
|
131 |
|
|
#browser()
|
132 |
|
|
# deltaInc <- brdrRowEdgeDelta[curMosCol] / numBlendRows
|
133 |
|
|
colVecCells <- cellFromRowCol(outMosaic,srows,curMosCol)
|
134 |
|
|
colVecValues <- getValuesBlock(outMosaic,row=begBlendRow,nrows=numBlendRows,col=curMosCol,ncols=1)
|
135 |
|
|
compareVec <- getValuesBlock(outMosaic,row=begBlendRow,nrows=numBlendRows+2,col=curMosCol,ncols=1)
|
136 |
|
|
curRowBoundaryOffset <- brdrRowEdgeDelta[curMosCol]
|
137 |
|
|
|
138 |
|
|
# note: we need to deal with NA values, which are possible.
|
139 |
|
|
|
140 |
|
|
# sumDeltaInc <- 0
|
141 |
|
|
# for (iCtr in numBlendRows : 1) # this moves from 'south to north', decay increases with distance.
|
142 |
|
|
for (iCtr in 1 : numBlendRows) # this moves from 'south to north', decay increases with distance.
|
143 |
|
|
# for (iCtr in length(colVecValues) : 1) # this moves from 'south to north', decay increases with distance.
|
144 |
|
|
{
|
145 |
|
|
|
146 |
|
|
# The idea: the closer to the border, the larger an increment we assign.
|
147 |
|
|
# in any case, increment the offset so that it is correct for any iupcoming non-NA column value
|
148 |
|
|
|
149 |
|
|
if (!is.na(colVecValues[1]))
|
150 |
|
|
{
|
151 |
|
|
#message(sprintf("cur col: %d Found a NON-NA vector",curMosCol))
|
152 |
|
|
#browser()
|
153 |
|
|
|
154 |
|
|
# exponential decay diminishes impact of the 'delta' edge adjustment with distance from the boundary.
|
155 |
|
|
|
156 |
|
|
dK <- exp(-(iCtr * dKc))
|
157 |
|
|
colToMod <- (numBlendRows-iCtr)+1
|
158 |
|
|
# qq <- as.integer(round(colVecValues[colToMod] + (curRowBoundaryOffset * dK)))
|
159 |
|
|
colVecValues[colToMod] <- as.integer(round(colVecValues[colToMod] + (curRowBoundaryOffset * dK)))
|
160 |
|
|
# colVecValues[iCtr] <- as.integer(round(colVecValues[iCtr] + (curRowBoundaryOffset * dK)))
|
161 |
|
|
}
|
162 |
|
|
}
|
163 |
|
|
|
164 |
|
|
# Insert this vector back into the mosaic: this technique adopted from raster PDF doc 'replacement' help.
|
165 |
|
|
# Looks like: I have to specify the row index (vector) to insert the values into the mosaic.
|
166 |
|
|
message("write columns to out mosaic")
|
167 |
|
|
#rowser()
|
168 |
|
|
outMosaic[colVecCells] <- colVecValues
|
169 |
|
|
|
170 |
|
|
}
|
171 |
|
|
|
172 |
|
|
# write the modified outMosaic values to the image file that we created.
|
173 |
|
|
|
174 |
|
|
message("Done with raster blending : hit key to update raster disk file..")
|
175 |
|
|
browser()
|
176 |
|
|
writeRaster(outMosaic, sFixedRasterFile, datatype="INT2S", format="GTiff",overwrite=TRUE)
|
177 |
|
|
}
|