Project

General

Profile

« Previous | Next » 

Revision e450523b

Added by Benoit Parmentier over 10 years ago

revisions2 multi-timescale paper modifications of functions for plotting histogram and bowplots of residuals

View differences:

climate/research/oregon/interpolation/multi_timescales_paper_interpolation_functions.R
613 613

  
614 614
### Plotting and computing average MAE per station for different methods
615 615
plot_MAE_per_station_fun <- function(list_data_v,names_var,interp_method,var_background,stat_loc,out_suffix){
616
  #Function to create a series of residuals MAE plots...
616
  #Function to compute residuals MAE per stations
617
  #Plots of maps of MAE per stations with raster background.
618
  #Plots of histograms of MAE per model and method
617 619
  
618 620
  mae_fun<-function(x){mean(abs(x))} #Mean Absolute Error give a residuals vector
619 621
  sd_abs_fun<-function(x){sd(abs(x))} #sd Absolute Error give a residuals vector
......
625 627
  data_v_combined <-convert_spdf_to_df_from_list(list_data_v) #long rownames
626 628
  
627 629
  #names_var_all<-c("res_mod1","res_mod2","res_mod3","res_mod4","res_mod5","res_mod6","res_mod7")#,"res_mod8","res_mod9","res_mod10")
628
  names_var_all <- res_model_name <- paste("res",names_var,sep="_")
629

  
630
  res_model_name <- paste("res",names_var,sep="_")
631
  covar_names_mod <- c("elev_s", "lat", "lon", "E_w", "N_w", "DISTOC", "LC1")
632
  names_var_all <- c(res_model_name,covar_names_mod) 
630 633
  t<-melt(data_v_combined,
631 634
        measure=names_var_all, 
632 635
        id=c("id"),
......
644 647
  data_v_mae<-spTransform(data_v_mae,CRS(CRS_interp))     #Project from WGS84 to new coord. system
645 648

  
646 649
  list_p_mae <- vector("list", length(names_var_all))
647
  #names_var <- c("mod1","mod2","mod3","mod7")
650
  list_p_hist <- vector("list", length(names_var_all))
648 651

  
649 652
  for (k in 1:length(names_var)){
650 653
    model_name <- names_var[k]
......
657 660
               na.rm=TRUE)
658 661
    p3 <- p2 + p1 + p2 #to force legend...
659 662
    list_p_mae[[k]] <- p3
663
    
664
    #Now add histogram!!
665
    p_hist <-histogram(df_tmp[[res_model_name]],
666
          col=c("grey"),
667
          ylab=list(label="Percent of total",cex=1.5),
668
          xlab=list(label="Residuals",cex=1.5),
669
          main=list(label=paste("MAE per station for ",model_name," ",interp_method, sep=""),
670
                    cex=1.8),
671
          par.settings = list(axis.text = list(font = 2, cex = 1.3),
672
                par.main.text=list(font=2,cex=2),strip.background=list(col="white")),
673
          par.strip.text=list(font=2,cex=1.5)        
674
    )
675
    list_p_hist[[k]] <- p_hist
676

  
660 677
  }
661 678
  
662
  data_mae_obj <- list(list_p_mae,data_v_mae)
663
  names(data_mae_obj) <- c("list_p_mae","data_v_mae")
679
  data_mae_obj <- list(list_p_mae,list_p_hist,data_v_mae,data_v_combined)
680
  names(data_mae_obj) <- c("list_p_mae","list_p_hist","data_v_mae","data_v_combined")
664 681
  return(data_mae_obj)
665 682
}
666 683

  
684
### Plotting and computing average MAE per station for different methods
685
plot_residuals_map_fun <- function(list_data_v,date_selected,index,names_var,interp_method,var_background){
686
  
687
  #Function create residuals map from list  of station data
688
  #index <- 244
689
  data_v <- list_data_v[[index]]
690
  names_mod <- names_var
691
  date_proc<-strptime(date_selected, "%Y%m%d")   # interpolation date being processed
692
  mo<-as.integer(strftime(date_proc, "%m"))          # current month of the date being processed
693
  day<-as.integer(strftime(date_proc, "%d"))
694
  year<-as.integer(strftime(date_proc, "%Y"))
695
  datelabel=format(ISOdate(year,mo,day),"%b %d, %Y")
696
  list_p <- vector("list", length(names_mod))
697
  for (k in 1:length(names_mod)){
698
    model_name <- names_mod[k]
699
    res_model_name <- paste("res",model_name,sep="_")
700
    #cx <- ((data_v[[res_model_name]])*2)
701
    p1 <- levelplot(var_background,#margin=F,
702
                  scales = list(draw = FALSE), colorkey = FALSE,par.settings = GrTheme)
703
    p2 <- bubble(data_v,res_model_name, 
704
               main=paste("Residuals ",model_name," ",interp_method," ",datelabel,sep=""))
705
    p3 <- p2 + p1 + p2 #to force legend...
706
    list_p[[k]] <- p3
707
  }
708
  return(list_p)
709
}
667 710

  
668 711
################### END OF SCRIPT ###################
669 712

  

Also available in: Unified diff