Project

General

Profile

« Previous | Next » 

Revision e581f2fb

Added by Benoit Parmentier about 11 years ago

running gam CAI OR 2010 temp with combination 5 for multi timescale paper

View differences:

climate/research/oregon/interpolation/master_script_temp.R
10 10
#STAGE 5: Output analyses: assessment of results for specific dates...
11 11
#
12 12
#AUTHOR: Benoit Parmentier                                                                       
13
#DATE: 11/01/2013                                                                                 
13
#DATE: 11/03/2013                                                                                 
14 14

  
15 15
#PROJECT: NCEAS INPLANT: Environment and Organisms --TASK#363, TASK$568--   
16 16

  
......
58 58
#source(file.path(script_path,"download_and_produce_MODIS_LST_climatology_06112013.R"))
59 59
source(file.path(script_path,"covariates_production_temperatures_08052013.R"))
60 60
source(file.path(script_path,"Database_stations_covariates_processing_function_06112013.R"))
61
source(file.path(script_path,"GAM_fusion_analysis_raster_prediction_multisampling_10112013.R"))
61
source(file.path(script_path,"GAM_fusion_analysis_raster_prediction_multisampling_11032013.R"))
62 62
source(file.path(script_path,"results_interpolation_date_output_analyses_08052013.R"))
63 63
#source(file.path(script_path,"results_covariates_database_stations_output_analyses_04012013.R")) #to be completed
64 64

  
65 65
#FUNCTIONS CALLED FROM GAM ANALYSIS RASTER PREDICTION ARE FOUND IN...
66 66

  
67 67
source(file.path(script_path,"sampling_script_functions_08252013.R"))
68
source(file.path(script_path,"GAM_fusion_function_multisampling_10042013.R")) #Includes Fusion and CAI methods
68
source(file.path(script_path,"GAM_fusion_function_multisampling_11032013.R")) #Includes Fusion and CAI methods
69 69
source(file.path(script_path,"interpolation_method_day_function_multisampling_10112013.R")) #Include GAM_day
70 70
source(file.path(script_path,"GAM_fusion_function_multisampling_validation_metrics_10102013.R"))
71 71

  
......
81 81

  
82 82
var<-"TMAX" # variable being interpolated
83 83
#out_prefix<-"_365d_gam_cai_lst_comb3_10102013"                #User defined output prefix
84
out_prefix<-"_365d_gam_daily_lst_comb5_11012013"                #User defined output prefix
84
out_prefix<-"_365d_gam_cai_lst_comb5_11032013"                #User defined output prefix
85 85

  
86
out_suffix<-"_OR_11012013"                                       #Regional suffix
86
out_suffix<-"_OR_11032013"                                       #Regional suffix
87 87
out_suffix_modis <-"_05302013"                       #pattern to find tiles produced previously     
88 88

  
89 89
#interpolation_method<-c("gam_fusion","gam_CAI","gam_daily") #other otpions to be added later
90
#interpolation_method<-c("gam_CAI") #other otpions to be added later
90
interpolation_method<-c("gam_CAI") #other otpions to be added later
91 91
#interpolation_method<-c("gam_fusion") #other otpions to be added later
92 92
#interpolation_method<-c("kriging_fusion") #other otpions to be added later
93 93
#interpolation_method<-c("gwr_fusion") #other otpions to be added later
94 94
#interpolation_method<-c("gwr_CAI") #other otpions to be added later
95 95
#interpolation_method<-c("kriging_CAI") 
96 96

  
97
interpolation_method<-c("gam_daily") #other otpions to be added later
97
#interpolation_method<-c("gam_daily") #other otpions to be added later
98 98
#interpolation_method<-c("kriging_daily") #other otpions to be added later
99 99
#interpolation_method<-c("gwr_daily") #other otpions to be added later
100 100

  
......
256 256

  
257 257
seed_number_month <- 100
258 258
nb_sample_month <-1           #number of time random sampling must be repeated for every hold out proportion
259
step_month <-0.1         
259
step_month <-0         
260
#step_month <-0.1
260 261
constant_month <- 0             #if value 1 then use the same samples as date one for the all set of dates
261 262
prop_minmax_month <-c(0,0)  #if prop_min=prop_max and step=0 then predictions are done for the number of dates...
262 263

  
......
281 282
               "y_var ~ s(lat,lon) + s(elev_s) + s(LST)",
282 283
               "y_var ~ s(lat,lon) + s(elev_s) + s(LST) + ti(LST,LC1)")
283 284

  
285
#Combination 5: for paper multi-timescale  paper
286
#list_models<-c("y_var ~ lat*lon",
287
#               "y_var ~ lat*lon + LST",
288
#               "y_var ~ lat*lon + elev_s",
289
#               "y_var ~ lat*lon + elev_s + N_w*E_w",
290
#               "y_var ~ lat*lon + elev_s + DISTOC",
291
#               "y_var ~ lat*lon + elev_s + LST",
292
#               "y_var ~ lat*lon + elev_s + LST + I(LST*LC1)")
284 293

  
285 294
#Combination 3: for paper baseline=s(lat,lon)+s(elev)
286 295
#list_models<-c("y_var ~ s(lat,lon) + s(elev_s)",

Also available in: Unified diff