Revision e5e3509c
Added by Benoit Parmentier over 9 years ago
climate/research/oregon/interpolation/global_run_scalingup_assessment_part2.R | ||
---|---|---|
5 | 5 |
#Analyses, figures, tables and data are also produced in the script. |
6 | 6 |
#AUTHOR: Benoit Parmentier |
7 | 7 |
#CREATED ON: 03/23/2014 |
8 |
#MODIFIED ON: 03/25/2015
|
|
8 |
#MODIFIED ON: 04/15/2015
|
|
9 | 9 |
#Version: 4 |
10 | 10 |
#PROJECT: Environmental Layers project |
11 | 11 |
#COMMENTS: analyses for run 10 global analyses,all regions 1500x4500km and other tiles |
... | ... | |
381 | 381 |
interpolation_method <- c("gam_CAI") #PARAM2 |
382 | 382 |
#out_suffix<-"run10_global_analyses_01282015" |
383 | 383 |
#out_suffix <- "output_run10_1000x3000_global_analyses_02102015" |
384 |
out_suffix <- "run10_1500x4500_global_analyses_03252015" #PARAM3
|
|
385 |
out_dir <- "/data/project/layers/commons/NEX_data/output_run10_1500x4500_global_analyses_03252015" #PARAM4
|
|
384 |
out_suffix <- "run10_1500x4500_global_analyses_pred_2003_04102015" #PARAM3
|
|
385 |
out_dir <- "/data/project/layers/commons/NEX_data/output_run10_1500x4500_global_analyses_pred_2003_04102015" #PARAM4
|
|
386 | 386 |
create_out_dir_param <- FALSE #PARAM 5 |
387 | 387 |
|
388 | 388 |
mosaic_plot <- FALSE #PARAM6 |
389 | 389 |
|
390 | 390 |
#if daily mosaics NULL then mosaicas all days of the year |
391 |
day_to_mosaic <- c("20100101","20100102","20100103","20100104","20100105",
|
|
392 |
"20100301","20100302","20100303","20100304","20100305",
|
|
393 |
"20100501","20100502","20100503","20100504","20100505",
|
|
394 |
"20100701","20100702","20100703","20100704","20100705",
|
|
395 |
"20100901","20100902","20100903","20100904","20100905",
|
|
396 |
"20101101","20101102","20101103","20101104","20101105") #PARAM7
|
|
391 |
day_to_mosaic <- c("20030101","20030102","20030103","20030104","20030105",
|
|
392 |
"20030301","20030302","20030303","20030304","20030305",
|
|
393 |
"20030501","20030502","20030503","20030504","20030505",
|
|
394 |
"20030701","20030702","20030703","20030704","20030705",
|
|
395 |
"20030901","20030902","20030903","20030904","20030905",
|
|
396 |
"20031101","20031102","20031103","20031104","20031105") #PARAM7
|
|
397 | 397 |
|
398 | 398 |
#CRS_locs_WGS84 <- CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #Station coords WGS84 |
399 | 399 |
CRS_WGS84 <- CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #Station coords WGS84 #CONSTANT1 |
... | ... | |
408 | 408 |
mulitple_region <- TRUE #PARAM 12 |
409 | 409 |
|
410 | 410 |
region_name <- "world" #PARAM 13 |
411 |
plot_region <- FALSE |
|
411 |
plot_region <- TRUE |
|
412 |
num_cores <- 10 #PARAM 14 |
|
412 | 413 |
|
413 | 414 |
########################## START SCRIPT ############################## |
414 | 415 |
|
... | ... | |
788 | 789 |
} |
789 | 790 |
|
790 | 791 |
## Number of tiles with information: |
791 |
sum(df_tile_processed$metrics_v) #188,number of tiles with raster object
|
|
792 |
length(df_tile_processed$metrics_v) #214,number of tiles in the region
|
|
793 |
sum(df_tile_processed$metrics_v)/length(df_tile_processed$metrics_v) #87.85% of tiles with info
|
|
792 |
sum(df_tile_processed$metrics_v) #20,number of tiles with raster object
|
|
793 |
length(df_tile_processed$metrics_v) #25,number of tiles in the region
|
|
794 |
sum(df_tile_processed$metrics_v)/length(df_tile_processed$metrics_v) #80 of tiles with info
|
|
794 | 795 |
|
795 | 796 |
#coordinates |
796 | 797 |
#coordinates(summary_metrics_v) <- c("lon","lat") |
... | ... | |
926 | 927 |
##################################################### |
927 | 928 |
#### Figure 9: plotting mosaics of regions ########### |
928 | 929 |
## plot mosaics... |
929 |
#l_reg_name <- unique(df_tile_processed$reg) |
|
930 |
#lf_mosaics_reg5 <- mixedsort(list.files(path="/data/project/layers/commons/NEX_data/output_run10_global_analyses_11302014/mosaics/reg5", |
|
931 |
# pattern="CAI_TMAX_clim_month_.*_mod1_all.tif", full.names=T)) |
|
932 |
#lf_mosaics_reg <- vector("list",length=length(l_reg_name)) |
|
933 |
#for(i in 1:length(l_reg_name)){ |
|
934 |
# lf_mosaics_reg[[i]] <- try(mixedsort( |
|
935 |
# list.files( |
|
936 |
# path=file.path(out_dir,"mosaics"), |
|
937 |
# #pattern="reg6_.*._CAI_TMAX_clim_month_.*._mod1_all_mean.tif", |
|
938 |
# pattern=paste(l_reg_name[i],".*._CAI_TMAX_clim_month_.*._mod1_all_mean.tif",sep=""), |
|
939 |
# full.names=T)) |
|
940 |
# ) |
|
941 |
#} |
|
930 |
|
|
931 |
#First collect file names |
|
932 |
|
|
933 |
|
|
942 | 934 |
#names(lf_mosaics_reg) <- l_reg_name |
943 | 935 |
|
944 | 936 |
#This part should be automated... |
... | ... | |
957 | 949 |
#lf_m_mask_reg6_1000x3000 <- mclapply(1:length(lf_m),FUN=plot_daily_mosaics,list_param=list_param_plot_daily_mosaics,mc.preschedule=FALSE,mc.cores = 10) |
958 | 950 |
|
959 | 951 |
if(plot_region==TRUE){ |
952 |
|
|
953 |
#get the files |
|
954 |
l_reg_name <- unique(df_tile_processed$reg) |
|
955 |
#lf_mosaics_reg5 <- mixedsort(list.files(path="/data/project/layers/commons/NEX_data/output_run10_global_analyses_11302014/mosaics/reg5", |
|
956 |
# pattern="CAI_TMAX_clim_month_.*_mod1_all.tif", full.names=T)) |
|
957 |
lf_mosaics_reg <- vector("list",length=length(l_reg_name)) |
|
958 |
for(i in 1:length(l_reg_name)){ |
|
959 |
lf_mosaics_reg[[i]] <- try(mixedsort( |
|
960 |
list.files( |
|
961 |
path=file.path(out_dir,"mosaics"), |
|
962 |
#pattern="reg6_.*._CAI_TMAX_clim_month_.*._mod1_all_mean.tif", |
|
963 |
pattern=paste(l_reg_name[i],".*._CAI_TMAX_clim_month_.*._mod1_all_mean.tif",sep=""), |
|
964 |
full.names=T)) |
|
965 |
) |
|
966 |
} |
|
967 |
|
|
968 |
#now mask and potl |
|
960 | 969 |
lf_mosaics_mask_reg <- vector("list",length=length(l_reg_name)) |
961 | 970 |
for(i in 1:length(l_reg_name)){ |
962 |
d |
|
971 |
|
|
963 | 972 |
# |
964 | 973 |
lf_m <- lf_mosaics_reg[[i]] |
965 | 974 |
out_dir_str <- out_dir |
... | ... | |
967 | 976 |
#lapply() |
968 | 977 |
list_param_plot_daily_mosaics <- list(lf_m=lf_m,reg_name=reg_name,out_dir_str=out_dir_str,out_suffix=out_suffix,l_dates=day_to_mosaic) |
969 | 978 |
#lf_m_mask_reg4_1500x4500 <- mclapply(1:2,FUN=plot_daily_mosaics,list_param=list_param_plot_daily_mosaics,mc.preschedule=FALSE,mc.cores = 6) |
979 |
#lf_mosaics_mask_reg[[i]] <- lapply(1:1,FUN=plot_daily_mosaics,list_param=list_param_plot_daily_mosaics) |
|
970 | 980 |
|
971 |
lf_mosaics_mask_reg[[i]] <- mclapply(1:length(lf_m),FUN=plot_daily_mosaics,list_param=list_param_plot_daily_mosaics,mc.preschedule=FALSE,mc.cores = 10)
|
|
981 |
lf_mosaics_mask_reg[[i]] <- mclapply(1:length(lf_m),FUN=plot_daily_mosaics,list_param=list_param_plot_daily_mosaics,mc.preschedule=FALSE,mc.cores = num_cores)
|
|
972 | 982 |
} |
973 | 983 |
} |
974 | 984 |
|
Also available in: Unified diff
assessment part2, first test for year 2003 predictions in reg5 Africa