Project

General

Profile

« Previous | Next » 

Revision e62bc941

Added by Benoit Parmentier almost 9 years ago

debugging of figures and adding figure 9 to produce yearly comparison of RMSE

View differences:

climate/research/oregon/interpolation/global_run_scalingup_assessment_part3.R
330 330
  for(i in 1:length(shps_tiles)){
331 331
    shp1 <- shps_tiles[[i]]
332 332
    pt <- centroids_pts[[i]]
333
    #if(!inherits(shp1,"try-error")){
334
    #  plot(shp1,add=T,border="blue")
335
    #  #plot(pt,add=T,cex=2,pch=5)
336
    #  label_id <- df_tile_processed$tile_id[i]
337
    #  text(coordinates(pt)[1],coordinates(pt)[2],labels=i,cex=1.3,font=2,col=c("red"))
338
    #}
339
    #to be able to run on NEX set font and usePolypath, maybe add option NEX?
333 340
    if(!inherits(shp1,"try-error")){
334
      plot(shp1,add=T,border="blue")
341
      plot(shp1,add=T,border="blue",usePolypath = FALSE) #added usePolypath following error on brige and NEX
335 342
      #plot(pt,add=T,cex=2,pch=5)
336 343
      label_id <- df_tile_processed$tile_id[i]
337
      text(coordinates(pt)[1],coordinates(pt)[2],labels=i,cex=1.3,font=2,col=c("red"))
344
      text(coordinates(pt)[1],coordinates(pt)[2],labels=i,cex=1.3,font=2,col=c("red"),family="HersheySerif")
338 345
    }
346

  
339 347
  }
340 348
  #title(paste("Tiles ", tile_size,region_name,sep=""))
341 349
  
......
567 575
    
568 576
    #summary_metrics_v$n_missing <- summary_metrics_v$n == 365
569 577
    #summary_metrics_v$n_missing <- summary_metrics_v$n < 365
570
    summary_metrics_v$n_missing <- summary_metrics_v$n < threshold_missing_day[i]
578
    summary_metrics_v$n_missing <- as.numeric(summary_metrics_v$n < threshold_missing_day[i])
571 579
    summary_metrics_v_subset <- subset(summary_metrics_v,model_name=="mod1")
572 580
    
573
    #res_pix <- 1200
574
    res_pix <- 960
575
    
576
    col_mfrow <- 1
577
    row_mfrow <- 1
578 581
    fig_filename <- paste("Figure7a_ac_metrics_map_centroids_tile_",model_name[j],"_","missing_day_",threshold_missing_day[i],
579 582
                       "_",out_suffix,".png",sep="")
580
    png(filename=paste("Figure7a_ac_metrics_map_centroids_tile_",model_name[j],"_","missing_day_",threshold_missing_day[i],
583

  
584
    if(sum(summary_metrics_v_subset$n_missing) > 0){#then there are centroids to plot!!!
585
      
586
      #res_pix <- 1200
587
      res_pix <- 960
588
      col_mfrow <- 1
589
      row_mfrow <- 1
590
      png(filename=paste("Figure7a_ac_metrics_map_centroids_tile_",model_name[j],"_","missing_day_",threshold_missing_day[i],
581 591
                       "_",out_suffix,".png",sep=""),
582 592
        width=col_mfrow*res_pix,height=row_mfrow*res_pix)
583 593
    
584
    model_name[j]
594
      model_name[j]
585 595
    
586
    p_shp <- layer(sp.polygons(reg_layer, lwd=1, col='black'))
587
    #title("(a) Mean for 1 January")
588
    p <- bubble(summary_metrics_v_subset,"n_missing",main=paste("Missing per tile and by ",model_name[j]," for ",
596
      p_shp <- layer(sp.polygons(reg_layer, lwd=1, col='black'))
597
      #title("(a) Mean for 1 January")
598
      p <- bubble(summary_metrics_v_subset,"n_missing",main=paste("Missing per tile and by ",model_name[j]," for ",
589 599
                                                                threshold_missing_day[i]))
590
    p1 <- p+p_shp
591
    try(print(p1)) #error raised if number of missing values below a threshold does not exist
592
    dev.off()
593
    
600
      p1 <- p+p_shp
601
      try(print(p1)) #error raised if number of missing values below a threshold does not exist
602
      dev.off()
603

  
604
    } 
605
     
594 606
    list_outfiles[[counter_fig+i]] <- fig_filename
595 607
  }
596 608
  counter_fig <- counter_fig+length(threshold_missing_day) #currently 4 days...
......
718 730
  #####################################################
719 731
  #### Figure 9: plotting boxplot by year and regions ###########
720 732
  
721
    #Ok fixed..now selection of model but should also offer an option for using both models!! so make this a function!!
722
  for(i in  1:length(model_name)){ #there are two models!!
733
  ## Figure 9a
734
  res_pix <- 480
735
  col_mfrow <- 1
736
  row_mfrow <- 1
737
  
738
  png(filename=paste("Figure9a_boxplot_overall_separated_by_region_year_with_oultiers_",model_name[i],"_",out_suffix,".png",sep=""),
739
      width=col_mfrow*res_pix,height=row_mfrow*res_pix)
740
  
741
  p<- bwplot(rmse~pred_mod | reg + year_predicted, data=tb,
742
             main="RMSE per model and region over all tiles")
743
  p<- bwplot(rmse~pred_mod | reg + year_predicted, data=tb,
744
             main="RMSE per model and region over all tiles")
745
  print(p)
746
  dev.off()
747
  
748
  ## Figure 9b
749
  png(filename=paste("Figure8b_boxplot_overall_separated_by_region_year_scaling_",model_name[i],"_",out_suffix,".png",sep=""),
750
      width=col_mfrow*res_pix,height=row_mfrow*res_pix)
751
  
752
  boxplot(rmse~pred_mod,data=tb,ylim=c(0,5),outline=FALSE)#,names=tb$pred_mod)
753
  title("RMSE per model over all tiles")
754
  p<- bwplot(rmse~pred_mod | reg + year_predicted, data=tb,ylim=c(0,5),
755
             main="RMSE per model and region over all tiles")
756
  print(p)
757
  dev.off()
723 758

  
724
    ## Figure 9a
725
    res_pix <- 480
726
    col_mfrow <- 1
727
    row_mfrow <- 1
728
    
729
    png(filename=paste("Figure9a_boxplot_overall_separated_by_region_year_with_oultiers_",model_name[i],"_",out_suffix,".png",sep=""),
730
        width=col_mfrow*res_pix,height=row_mfrow*res_pix)
731
    
732
    #p<- bwplot(rmse~pred_mod | reg + year_predicted, data=tb,
733
    #           main="RMSE per model and region over all tiles")
734
    #p<- bwplot(rmse~year_predicted | reg  , subset(tb,tb$pred_mod==model_name[i]),
735
               #main="RMSE per model and region over all tiles")
736
    #p<- bwplot(rmse~year_predicted   , subset(tb,tb$pred_mod==model_name[i]),
737
    #           main="RMSE per model and region over all tiles")
738
    boxplot(rmse~year_predicted   , subset(tb,tb$pred_mod==model_name[i]))
739
    title(paste("RMSE with outliers and by year for all tiles: ",model_name[i],sep=""))
740
    #print(p)
741
    dev.off()
742
    
743
    ## Figure 9b
744
    png(filename=paste("Figure9b_boxplot_overall_separated_by_region_year_scaling_",model_name[i],"_",out_suffix,".png",sep=""),
745
        width=col_mfrow*res_pix,height=row_mfrow*res_pix)
746
    
747
    #boxplot(rmse~pred_mod,data=tb,ylim=c(0,5),outline=FALSE)#,names=tb$pred_mod)
748
    #title("RMSE per model over all tiles")
749
    #p<- bwplot(rmse~pred_mod | reg + year_predicted, data=tb,ylim=c(0,5),
750
    #           main="RMSE per model and region over all tiles")
751
    boxplot(rmse~year_predicted,subset(tb,tb$pred_mod==model_name[i]),ylim=c(0,5),outline=FALSE)
752
    title(paste("RMSE with scaling and by year for all tiles: ",model_name[i],sep=""))
759
  list_outfiles[[counter_fig+1]] <- paste("Figure9a_boxplot_overall_separated_by_region_year_with_oultiers_",model_name[i],"_",out_suffix,".png",sep="")
760
  counter_fig <- counter_fig + 1
753 761

  
754
    #print(p)
755
    dev.off()
756
    
757
    list_outfiles[[counter_fig+1]] <- paste("Figure9a_boxplot_overall_separated_by_region_year_with_oultiers_",model_name[i],"_",out_suffix,".png",sep="")
758
    counter_fig <- counter_fig + 1
759
  }
760 762
  ##############################################################
761 763
  ############## Prepare object to return
762 764
  ############## Collect information from assessment ##########
......
1044 1046
# Browse[3]> c
1045 1047
# Error in grid.Call.graphics(L_setviewport, pvp, TRUE) : 
1046 1048
#   non-finite location and/or size for viewport
1049
#Error in grid.Call.graphics(L_setviewport, vp, TRUE) : 
1050
#  non-finite location and/or size for viewport

Also available in: Unified diff