Revision e7295f5b
Added by Benoit Parmentier about 11 years ago
climate/research/oregon/interpolation/multi_timescales_paper_interpolation_functions.R | ||
---|---|---|
1 |
#################################### INTERPOLATION OF TEMPERATURES ####################################### |
|
2 |
############################ Script for manuscript analyses,tables and figures ####################################### |
|
3 |
#This script reads information concerning the Oregon case study to adapt data for the revised |
|
4 |
# interpolation code. |
|
5 |
#Functions used in the production of figures and data for the multi timescale paper are recorded. |
|
6 |
#AUTHOR: Benoit Parmentier # |
|
7 |
#DATE: 11/25/2013 |
|
8 |
#Version: 1 |
|
9 |
#PROJECT: Environmental Layers project # |
|
10 |
################################################################################################# |
|
11 | ||
12 |
###Loading R library and packages |
|
13 |
library(gtools) # loading some useful tools |
|
14 |
library(mgcv) # GAM package by Simon Wood |
|
15 |
library(sp) # Spatial pacakge with class definition by Bivand et al. |
|
16 |
library(spdep) # Spatial pacakge with methods and spatial stat. by Bivand et al. |
|
17 |
library(rgdal) # GDAL wrapper for R, spatial utilities |
|
18 |
library(gstat) # Kriging and co-kriging by Pebesma et al. |
|
19 |
library(fields) # NCAR Spatial Interpolation methods such as kriging, splines |
|
20 |
library(raster) # Hijmans et al. package for raster processing |
|
21 |
library(gdata) # various tools with xls reading |
|
22 |
library(rasterVis) |
|
23 |
library(parallel) |
|
24 |
library(maptools) |
|
25 |
library(maps) |
|
26 |
library(reshape) |
|
27 |
library(plotrix) |
|
28 |
library(plyr) |
|
29 | ||
30 |
#### FUNCTION USED IN SCRIPT |
|
31 | ||
32 |
function_analyses_paper <-"multi_timescales_paper_interpolation_functions_11252013.R" |
|
33 | ||
34 |
plot_transect_m2<-function(list_trans,r_stack,title_plot,disp=FALSE,m_layers){ |
|
35 |
#This function creates plot of transects for stack of raster images. |
|
36 |
#Arguments: |
|
37 |
#list_trans: list of files containing the transects lines in shapefile format |
|
38 |
#r_stack: raster stack containing the information to extect |
|
39 |
#title_plot: plot title |
|
40 |
#disp: display and save from X11 if TRUE or plot to png file if FALSE |
|
41 |
#m_layers: index for layerers containing alternate units to be drawned on a differnt scale |
|
42 |
#RETURN: |
|
43 |
#list containing transect information |
|
44 |
|
|
45 |
nb<-length(list_trans) #number of transects |
|
46 |
t_col<-rainbow(nb) |
|
47 |
t_col<-c("red","green","black") |
|
48 |
lty_list<-c("dashed","solid","dotted") |
|
49 |
list_trans_data<-vector("list",nb) |
|
50 |
|
|
51 |
#For scale 1 |
|
52 |
for (i in 1:nb){ |
|
53 |
trans_file<-list_trans[[i]][1] |
|
54 |
filename<-sub(".shp","",trans_file) #Removing the extension from file. |
|
55 |
transect<-readOGR(dirname(filename), basename(filename)) #reading shapefile |
|
56 |
trans_data<-extract(r_stack, transect) |
|
57 |
if (disp==FALSE){ |
|
58 |
png(file=paste(list_trans[[i]][2],".png",sep=""), |
|
59 |
height=480*1,width=480*2) |
|
60 |
} |
|
61 |
#Plot layer values for specific transect |
|
62 |
for (k in 1:ncol(trans_data[[1]])){ |
|
63 |
y<-trans_data[[1]][,k] |
|
64 |
x<-1:length(y) |
|
65 |
m<-match(k,m_layers) |
|
66 |
|
|
67 |
if (k==1 & is.na(m)){ |
|
68 |
plot(x,y,type="l",xlab="transect distance from coastal origin (km)", ylab=" maximum temperature (degree C)", |
|
69 |
,cex=1.2,col=t_col[k]) |
|
70 |
#axis(2) |
|
71 |
} |
|
72 |
if (k==1 & !is.na(m)){ |
|
73 |
plot(x,y,type="l",col=t_col[k],lty="dotted",axes=F) #plotting fusion profile |
|
74 |
#axis(4,xlab="",ylab="elevation(m)") |
|
75 |
axis(4,cex=1.2) |
|
76 |
} |
|
77 |
if (k!=1 & is.na(m)){ |
|
78 |
#par(new=TRUE) # new plot without erasing old |
|
79 |
lines(x,y,type="l",xlab="",ylab="",col=t_col[k],axes=F) #plotting fusion profile |
|
80 |
#axis(2,xlab="",ylab="tmax (in degree C)") |
|
81 |
} |
|
82 |
if (k!=1 & !is.na(m)){ |
|
83 |
par(new=TRUE) # key: ask for new plot without erasing old |
|
84 |
plot(x,y,type="l",col=t_col[k],xlab="",ylab="",lty="dotted",axes=F) #plotting fusion profile |
|
85 |
#axis(4,xlab="",ylab="elevation(m)") |
|
86 |
axis(4,cex=1.2) |
|
87 |
} |
|
88 |
} |
|
89 |
title(title_plot[i]) |
|
90 |
legend("topleft",legend=names(r_stack)[1:2], |
|
91 |
cex=1.2, col=t_col,lty=1,bty="n") |
|
92 |
legend("topright",legend=names(r_stack)[3], |
|
93 |
cex=1.2, col=t_col[3],lty="dotted",bty="n") |
|
94 |
if (disp==TRUE){ |
|
95 |
savePlot(file=paste(list_trans[[i]][2],".png",sep=""),type="png") |
|
96 |
} |
|
97 |
if (disp==FALSE){ |
|
98 |
dev.off() |
|
99 |
} |
|
100 |
list_trans_data[[i]]<-trans_data |
|
101 |
} |
|
102 |
names(list_trans_data)<-names(list_trans) |
|
103 |
return(list_trans_data) |
|
104 |
} |
|
105 | ||
106 | ||
107 |
### generate filter for Moran's I function in raster package |
|
108 |
autocor_filter_fun <-function(no_lag=1,f_type="queen"){ |
|
109 |
if(f_type=="queen"){ |
|
110 |
no_rows <- 2*no_lag +1 |
|
111 |
border_row <-rep(1,no_rows) |
|
112 |
other_row <- c(1,rep(0,no_rows-2),1) |
|
113 |
other_rows <- rep(other_row,no_rows-2) |
|
114 |
mat_data<- c(border_row,other_rows,border_row) |
|
115 |
autocor_filter<-matrix(mat_data,nrow=no_rows) |
|
116 |
} |
|
117 |
#if(f_type=="rook){} #add later |
|
118 |
return(autocor_filter) |
|
119 |
} |
|
120 |
#MODIFY: calculate for multiple dates and create averages... |
|
121 |
#Now run Moran's I for raster image given a list of filters for different lags and raster stack |
|
122 |
moran_multiple_fun<-function(i,list_param){ |
|
123 |
#Parameters: |
|
124 |
#list_filters: list of filters with different lags in the image |
|
125 |
#r_stack: stack of raster image, only the selected layer is used... |
|
126 |
list_filters <-list_param$list_filters |
|
127 |
r <- subset(list_param$r_stack,i) |
|
128 |
moran_list <- lapply(list_filters,FUN=Moran,x=r) |
|
129 |
moran_v <-as.data.frame(unlist(moran_list)) |
|
130 |
names(moran_v)<-names(r) |
|
131 |
return(moran_v) |
|
132 |
} |
|
133 | ||
134 |
#Modfiy...temporal plot for 1,10,20 |
|
135 |
stat_moran_std_raster_fun<-function(i){ |
|
136 |
list_var_stat<-vector("list",ncol(lf_list)) |
|
137 |
for (k in 1:length(lf_list)){ |
|
138 |
|
|
139 |
raster_pred<-raster(lf_list[i,k]) |
|
140 |
tmp_rast<-mask(raster_pred,mask_rast) |
|
141 |
#tmp_rast<-raster_pred |
|
142 |
raster_pred2<-tmp_rast |
|
143 |
|
|
144 |
t1<-cellStats(raster_pred,na.rm=TRUE,stat=sd) #Calculating the standard deviation for the |
|
145 |
m1<-Moran(raster_pred,w=3) #Calculating Moran's I with window of 3 an default Queen's case |
|
146 |
stat<-as.data.frame(t(c(m1,t1))) |
|
147 |
names(stat)<-c("moranI","std") |
|
148 |
list_var_stat[[k]]<-stat |
|
149 |
} |
|
150 |
dat_var_stat<-do.call(rbind,list_var_stat) |
|
151 |
dat_var_stat$lf_names<-names(lf_list) |
|
152 |
dat_var_stat$dates<-dates[i] |
|
153 |
return(dat_var_stat) |
|
154 |
} |
|
155 | ||
156 | ||
157 |
################### END OF SCRIPT ################### |
|
158 | ||
159 |
Also available in: Unified diff
initial commit for split of source script containing functions for multi-timescales analyses paper