Revision e7fa7bc9
Added by Benoit Parmentier over 12 years ago
climate/research/oregon/interpolation/fusion_gam_prediction_reg.R | ||
---|---|---|
17 | 17 |
library(gstat) # Kriging and co-kriging by Pebesma et al. |
18 | 18 |
library(fields) # NCAR Spatial Interpolation methods such as kriging, splines |
19 | 19 |
library(raster) # Hijmans et al. package for raster processing |
20 |
library(rasterVis) |
|
20 | 21 |
library(parallel) # Urbanek S. and Ripley B., package for multi cores & parralel processing |
21 | 22 |
|
22 | 23 |
### Parameters and argument |
23 | 24 |
|
24 | 25 |
infile1<- "ghcn_or_tmax_covariates_06262012_OR83M.shp" #GHCN shapefile containing variables for modeling 2010 |
25 |
#infile2<-"list_10_dates_04212012.txt" #List of 10 dates for the regression |
|
26 |
#tinfile2<-"list_10_dates_04212012.txt" #List of 10 dates for the regression
|
|
26 | 27 |
#infile2<-"list_2_dates_04212012.txt" |
27 | 28 |
infile2<-"list_365_dates_04212012.txt" |
28 | 29 |
infile3<-"LST_dates_var_names.txt" #LST dates name |
... | ... | |
30 | 31 |
infile5<-"mean_day244_rescaled.rst" #Raster or grid for the locations of predictions |
31 | 32 |
#infile6<-"lst_climatology.txt" |
32 | 33 |
infile6<-"LST_files_monthly_climatology.txt" |
34 |
inlistf<-"list_files_05032012.txt" #Stack of images containing the Covariates |
|
35 |
|
|
36 |
|
|
33 | 37 |
#path<-"/home/parmentier/Data/IPLANT_project/data_Oregon_stations" |
34 |
path<-"/home/parmentier/Data/IPLANT_project/data_Oregon_stations" |
|
38 |
path<-"/home/parmentier/Data/IPLANT_project/data_Oregon_stations_07192012_GAM" |
|
39 |
#path<-"/home/parmentier/Data/IPLANT_project/data_Oregon_stations_GAM" |
|
35 | 40 |
#path<-"/home/parmentier/Data/IPLANT_project/data_Oregon_stations_07152012" #Jupiter LOCATION on Atlas for kriging" |
36 | 41 |
#path<-"M:/Data/IPLANT_project/data_Oregon_stations" #Locations on Atlas |
37 | 42 |
|
... | ... | |
40 | 45 |
#GHCN Database for 1980-2010 for study area (OR) |
41 | 46 |
data3<-read.table(paste(path,"/","ghcn_data_TMAXy1980_2010_OR_0602012.txt",sep=""),sep=",", header=TRUE) |
42 | 47 |
|
48 |
nmodels<-8 #number of models running |
|
49 |
y_var_name<-"dailyTmax" |
|
50 |
predval<-1 |
|
43 | 51 |
prop<-0.3 #Proportion of testing retained for validation |
44 | 52 |
#prop<-0.25 |
45 | 53 |
seed_number<- 100 #Seed number for random sampling |
46 |
out_prefix<-"_07152012_10d_fusion17" #User defined output prefix
|
|
54 |
out_prefix<-"_07242012_365d_GAM_fusion5" #User defined output prefix
|
|
47 | 55 |
setwd(path) |
48 | 56 |
bias_val<-0 #if value 1 then training data is used in the bias surface rather than the all monthly stations |
49 | 57 |
|
50 | 58 |
#source("fusion_function_07192012.R") |
51 |
source("fusion_function_07192012.R")
|
|
59 |
source("GAM_fusion_function_07192012d.R")
|
|
52 | 60 |
############ START OF THE SCRIPT ################## |
53 | 61 |
# |
54 | 62 |
# |
55 | 63 |
### Step 0/Step 6 in Brian's code...preparing year 2010 data for modeling |
56 | 64 |
# |
57 | 65 |
|
58 |
|
|
59 | 66 |
###Reading the station data and setting up for models' comparison |
60 | 67 |
filename<-sub(".shp","",infile1) #Removing the extension from file. |
61 | 68 |
ghcn<-readOGR(".", filename) #reading shapefile |
... | ... | |
65 | 72 |
mean_LST<- readGDAL(infile5) #Reading the whole raster in memory. This provides a grid for kriging |
66 | 73 |
proj4string(mean_LST)<-CRS #Assigning coordinate information to prediction grid. |
67 | 74 |
|
68 |
ghcn = transform(ghcn,Northness = cos(ASPECT*pi/180)) #Adding a variable to the dataframe
|
|
69 |
ghcn = transform(ghcn,Eastness = sin(ASPECT*pi/180)) #adding variable to the dataframe.
|
|
70 |
ghcn = transform(ghcn,Northness_w = sin(slope*pi/180)*cos(ASPECT*pi/180)) #Adding a variable to the dataframe
|
|
71 |
ghcn = transform(ghcn,Eastness_w = sin(slope*pi/180)*sin(ASPECT*pi/180)) #adding variable to the dataframe.
|
|
75 |
ghcn <- transform(ghcn,Northness = cos(ASPECT*pi/180)) #Adding a variable to the dataframe
|
|
76 |
ghcn <- transform(ghcn,Eastness = sin(ASPECT*pi/180)) #adding variable to the dataframe.
|
|
77 |
ghcn <- transform(ghcn,Northness_w = sin(slope*pi/180)*cos(ASPECT*pi/180)) #Adding a variable to the dataframe
|
|
78 |
ghcn <- transform(ghcn,Eastness_w = sin(slope*pi/180)*sin(ASPECT*pi/180)) #adding variable to the dataframe.
|
|
72 | 79 |
|
73 | 80 |
#Remove NA for LC and CANHEIGHT |
74 | 81 |
ghcn$LC1[is.na(ghcn$LC1)]<-0 |
... | ... | |
79 | 86 |
LST_dates <-readLines(paste(path,"/",infile3, sep="")) |
80 | 87 |
models <-readLines(paste(path,"/",infile4, sep="")) |
81 | 88 |
|
82 |
# #Model assessment: specific diagnostic/metrics for GAM |
|
83 |
# results_AIC<- matrix(1,length(dates),length(models)+3) |
|
84 |
# results_GCV<- matrix(1,length(dates),length(models)+3) |
|
85 |
# results_DEV<- matrix(1,length(dates),length(models)+3) |
|
86 |
# results_RMSE_f<- matrix(1,length(dates),length(models)+3) |
|
87 |
# |
|
88 |
# #Model assessment: general diagnostic/metrics |
|
89 |
# results_RMSE <- matrix(1,length(dates),length(models)+4) |
|
90 |
# results_MAE <- matrix(1,length(dates),length(models)+4) |
|
91 |
# results_ME <- matrix(1,length(dates),length(models)+4) #There are 8+1 models |
|
92 |
# results_R2 <- matrix(1,length(dates),length(models)+4) #Coef. of determination for the validation dataset |
|
93 |
# |
|
94 |
# results_RMSE_f<- matrix(1,length(dates),length(models)+4) #RMSE fit, RMSE for the training dataset |
|
95 |
|
|
96 |
#Model assessment: specific diagnostic/metrics for GAM |
|
97 |
results_AIC<- matrix(1,1,length(models)+3) |
|
98 |
results_GCV<- matrix(1,1,length(models)+3) |
|
99 |
results_DEV<- matrix(1,1,length(models)+3) |
|
89 |
##Extracting the variables values from the raster files |
|
90 |
|
|
91 |
lines<-read.table(paste(path,"/",inlistf,sep=""), sep=" ") #Column 1 contains the names of raster files |
|
92 |
inlistvar<-lines[,1] |
|
93 |
inlistvar<-paste(path,"/",as.character(inlistvar),sep="") |
|
94 |
covar_names<-as.character(lines[,2]) #Column two contains short names for covaraites |
|
95 |
|
|
96 |
s_raster<- stack(inlistvar) #Creating a stack of raster images from the list of variables. |
|
97 |
layerNames(s_raster)<-covar_names #Assigning names to the raster layers |
|
98 |
projection(s_raster)<-CRS |
|
99 |
|
|
100 |
#stat_val<- extract(s_raster, ghcn3) #Extracting values from the raster stack for every point location in coords data frame. |
|
101 |
pos<-match("ASPECT",layerNames(s_raster)) #Find column with name "value" |
|
102 |
r1<-raster(s_raster,layer=pos) #Select layer from stack |
|
103 |
pos<-match("slope",layerNames(s_raster)) #Find column with name "value" |
|
104 |
r2<-raster(s_raster,layer=pos) #Select layer from stack |
|
105 |
N<-cos(r1*pi/180) |
|
106 |
E<-sin(r1*pi/180) |
|
107 |
Nw<-sin(r2*pi/180)*cos(r1*pi/180) #Adding a variable to the dataframe |
|
108 |
Ew<-sin(r2*pi/180)*sin(r1*pi/180) #Adding variable to the dataframe. |
|
109 |
|
|
110 |
pos<-match("LC1",layerNames(s_raster)) #Find column with name "value" |
|
111 |
LC1<-raster(s_raster,layer=pos) #Select layer from stack |
|
112 |
s_raster<-dropLayer(s_raster,pos) |
|
113 |
LC1[is.na(LC1)]<-0 |
|
114 |
pos<-match("LC3",layerNames(s_raster)) #Find column with name "value" |
|
115 |
LC3<-raster(s_raster,layer=pos) #Select layer from stack |
|
116 |
s_raster<-dropLayer(s_raster,pos) |
|
117 |
LC3[is.na(LC3)]<-0 |
|
118 |
|
|
119 |
xy<-coordinates(r1) #get x and y projected coordinates... |
|
120 |
xy_latlon<-project(xy, CRS, inv=TRUE) # find lat long for projected coordinats (or pixels...) |
|
121 |
lon<-raster(xy_latlon) #Transform a matrix into a raster object ncol=ncol(r1), nrow=nrow(r1)) |
|
122 |
ncol(lon)<-ncol(r1) |
|
123 |
nrow(lon)<-nrow(r1) |
|
124 |
extent(lon)<-extent(r1) |
|
125 |
projection(lon)<-CRS #At this stage this is still an empty raster with 536 nrow and 745 ncell |
|
126 |
lat<-lon |
|
127 |
values(lon)<-xy_latlon[,1] |
|
128 |
values(lat)<-xy_latlon[,2] |
|
129 |
|
|
130 |
r<-stack(N,E,Nw,Ew,lon,lat,LC1,LC3) |
|
131 |
rnames<-c("Northness","Eastness","Northness_w","Eastness_w", "lon","lat","LC1","LC3") |
|
132 |
layerNames(r)<-rnames |
|
133 |
s_raster<-addLayer(s_raster, r) |
|
134 |
|
|
135 |
#s_sgdf<-as(s_raster,"SpatialGridDataFrame") #Conversion to spatial grid data frame |
|
136 |
|
|
137 |
####### Preparing LST stack of climatology... |
|
138 |
|
|
139 |
#l=list.files(pattern="mean_month.*rescaled.rst") |
|
140 |
l <-readLines(paste(path,"/",infile6, sep="")) |
|
141 |
molst<-stack(l) #Creating a raster stack... |
|
142 |
#setwd(old) |
|
143 |
molst<-molst-273.16 #K->C #LST stack of monthly average... |
|
144 |
idx <- seq(as.Date('2010-01-15'), as.Date('2010-12-15'), 'month') |
|
145 |
molst <- setZ(molst, idx) |
|
146 |
layerNames(molst) <- month.abb |
|
147 |
|
|
148 |
|
|
149 |
###### Preparing tables for model assessment: specific diagnostic/metrics |
|
150 |
|
|
151 |
#Model assessment: specific diagnostics/metrics |
|
152 |
results_AIC<- matrix(1,1,nmodels+3) |
|
153 |
results_GCV<- matrix(1,1,nmodels+3) |
|
154 |
results_DEV<- matrix(1,1,nmodels+3) |
|
100 | 155 |
#results_RMSE_f<- matrix(1,length(models)+3) |
101 | 156 |
|
102 | 157 |
#Model assessment: general diagnostic/metrics |
103 |
results_RMSE <- matrix(1,1,length(models)+4) |
|
104 |
results_MAE <- matrix(1,1,length(models)+4) |
|
105 |
results_ME <- matrix(1,1,length(models)+4) #There are 8+1 models |
|
106 |
results_R2 <- matrix(1,1,length(models)+4) #Coef. of determination for the validation dataset |
|
158 |
results_RMSE <- matrix(1,1,nmodels+4) |
|
159 |
results_MAE <- matrix(1,1,nmodels+4) |
|
160 |
results_ME <- matrix(1,1,nmodels+4) #There are 8+1 models |
|
161 |
results_R2 <- matrix(1,1,nmodels+4) #Coef. of determination for the validation dataset |
|
162 |
|
|
163 |
results_RMSE_f<- matrix(1,1,nmodels+4) #RMSE fit, RMSE for the training dataset |
|
164 |
results_MAE_f <- matrix(1,1,nmodels+4) |
|
165 |
|
|
166 |
######## Preparing monthly averages from the ProstGres database |
|
167 |
|
|
168 |
# do this work outside of (before) this function |
|
169 |
# to avoid making a copy of the data frame inside the function call |
|
170 |
date1<-ISOdate(data3$year,data3$month,data3$day) #Creating a date object from 3 separate column |
|
171 |
date2<-as.POSIXlt(as.Date(date1)) |
|
172 |
data3$date<-date2 |
|
173 |
d<-subset(data3,year>=2000 & mflag=="0" ) #Selecting dataset 2000-2010 with good quality: 193 stations |
|
174 |
#May need some screeing??? i.e. range of temp and elevation... |
|
175 |
d1<-aggregate(value~station+month, data=d, mean) #Calculate monthly mean for every station in OR |
|
176 |
id<-as.data.frame(unique(d1$station)) #Unique station in OR for year 2000-2010: 193 but 7 loss of monthly avg |
|
107 | 177 |
|
108 |
results_RMSE_f<- matrix(1,1,length(models)+4) #RMSE fit, RMSE for the training dataset |
|
109 |
results_MAE_f <- matrix(1,1,length(models)+4) |
|
178 |
dst<-merge(d1, stat_loc, by.x="station", by.y="STAT_ID") #Inner join all columns are retained |
|
179 |
|
|
180 |
#This allows to change only one name of the data.frame |
|
181 |
pos<-match("value",names(dst)) #Find column with name "value" |
|
182 |
names(dst)[pos]<-c("TMax") |
|
183 |
dst$TMax<-dst$TMax/10 #TMax is the average max temp for monthy data |
|
184 |
#dstjan=dst[dst$month==9,] #dst contains the monthly averages for tmax for every station over 2000-2010 |
|
185 |
|
|
186 |
######### Preparing daily values for training and testing |
|
110 | 187 |
|
111 | 188 |
#Screening for bad values: value is tmax in this case |
112 | 189 |
#ghcn$value<-as.numeric(ghcn$value) |
... | ... | |
116 | 193 |
ghcn<-ghcn_test2 |
117 | 194 |
#coords<- ghcn[,c('x_OR83M','y_OR83M')] |
118 | 195 |
|
196 |
##Sampling: training and testing sites... |
|
197 |
|
|
119 | 198 |
set.seed(seed_number) #Using a seed number allow results based on random number to be compared... |
120 | 199 |
ghcn.subsets <-lapply(dates, function(d) subset(ghcn, date==d)) #this creates a list of 10 or 365 subsets dataset based on dates |
121 | 200 |
sampling<-vector("list",length(dates)) |
... | ... | |
129 | 208 |
sampling[[i]]<-ind.training |
130 | 209 |
} |
131 | 210 |
|
211 |
######## Prediction for the range of dates |
|
212 |
|
|
132 | 213 |
#Start loop here... |
133 | 214 |
|
134 | 215 |
## looping through the dates...this is the main part of the code |
... | ... | |
137 | 218 |
#for(i in 1:length(dates)){ [[ # start of the for loop #1 |
138 | 219 |
#i=1 |
139 | 220 |
|
140 |
|
|
141 | 221 |
#mclapply(1:length(dates), runFusion, mc.cores = 8)#This is the end bracket from mclapply(...) statement |
222 |
#source("GAM_fusion_function_07192012d.R") |
|
142 | 223 |
|
143 |
fusion_mod<-mclapply(1:length(dates), runFusion, mc.cores = 8)#This is the end bracket from mclapply(...) statement
|
|
224 |
gam_fus_mod<-mclapply(1:length(dates), runGAMFusion,mc.preschedule=FALSE,mc.cores = 8) #This is the end bracket from mclapply(...) statement
|
|
144 | 225 |
#fusion_mod357<-mclapply(357:365,runFusion, mc.cores=8)# for debugging |
145 | 226 |
#test<-runFusion(362) #date 362 has problems with GAM |
146 | 227 |
#test<-mclapply(357,runFusion, mc.cores=1)# for debugging |
... | ... | |
152 | 233 |
} |
153 | 234 |
|
154 | 235 |
|
155 |
tb<-fusion_mod[[1]][[3]][0,] #empty data frame with metric table structure that can be used in rbinding...
|
|
156 |
tb_tmp<-fusion_mod #copy
|
|
236 |
tb<-gam_fus_mod[[1]][[3]][0,] #empty data frame with metric table structure that can be used in rbinding...
|
|
237 |
tb_tmp<-gam_fus_mod #copy
|
|
157 | 238 |
|
158 | 239 |
for (i in 1:length(tb_tmp)){ |
159 | 240 |
tmp<-tb_tmp[[i]][[3]] |
... | ... | |
183 | 264 |
|
184 | 265 |
write.table(tb_diagnostic1, file= paste(path,"/","results2_fusion_Assessment_measure1",out_prefix,".txt",sep=""), sep=",") |
185 | 266 |
write.table(tb, file= paste(path,"/","results2_fusion_Assessment_measure_all",out_prefix,".txt",sep=""), sep=",") |
186 |
|
|
267 |
save(gam_fus_mod,file= paste(path,"/","results2_fusion_Assessment_measure_all",out_prefix,".RData",sep="")) |
|
187 | 268 |
#tb<-as.data.frame(tb_diagnostic1) |
188 | 269 |
|
189 | 270 |
#write.table(tb_1, file= paste(path,"/","results2_fusion_Assessment_measure1",out_prefix,".txt",sep=""), sep=",") |
Also available in: Unified diff
FUSION, GAM and fusion comparison raster prediction modified return object to solve memory issues in mod object